
February 24, 2002
DISARM — Document
Information Set Articulated
Reference Model

Rick Jelliffe

Discussion Draft

This note proposes an ISO standard "Document Information Set Articulated
Reference Model" be developed, to provide the basis for ISO DSDL and for
renewing ISO 8879 SGML.

Motivation

Since 1986, there have been four notable streams in markup languages:

• ISO 8879 SGML, extended by the General Facilities, Architectural Forms
Definitions Requirements (ADFR), Lexical Types Definition Requirements
(LTDR), Formal System Identifiers (FSI), Annexes J to L, augmented with
OASIS Catalogs. A parser implementation of mature SGML in Open Source
is James Clark's SP.

• W3C HTML, in various versions, with dialects including ASP, JSP, PHP, and
Blogger. A parser implementation for mature HTML in Open Source is Dave
Ragget's Tidy.

• W3C XML, extended by Namespaces, XBase, XInclude. Widespread imple-
mentations of parsers use the mature SAX API.
1

Model
• The current ISO DSDL project, informed by RELAX Namespaces, RELAX
NG, W3C XML Schemas, Schematron. The Xerces XNI API is a recent
attempt to cope with post-processing XML, for uses such as validation and
creating typed information sets.

In all these cases, the natural increase in complexity of evolving standards has
made it difficult to understand the processing order and operation. ISO 8879 has
been widely criticized for not being amenable to simple grammatical analysis
("not using 'computer science concepts'"), yet the same problems are
experienced even with overtly layered specifications such as the XML family,
due to this entropy.

These problems would be reduced by introducing a reference model which was
neutral with regard to each of the four main streams, but allowed clear and
diagrammatic exposition of the stages of parsing and processing a marked-up
document incrementally from bits to a terminal information set.

This discussion paper suggests such a model: DISARM - Document
Information Set Articulated Reference Model.

The utility of DISARM might include that it can provide an attractive way to
allow a top-down re-specification of SGML in a future ISO 8879. It would
might also provide some help for DSDL.

Model

The reference model uses UML terminology and diagrams at the top-level only.
If desired, specific graphical stereotypes could be created, as allowed by UML.

It models the kinds of markup processing of interest as a chain of components,
one connected to the next, each of which implements a common event-passing
interface. Different markup languages and SGML features can be modeled
using particular chains of components.

NOTE: Though the components could be used for a design, the intention of the
reference model is to facilitate clear and rigorous exposition. Components in the
reference model could be implemented, for example, as objects, as function or
procedure calls, callbacks, or folded together for efficiency.
2 DISARM — Document Information Set Articulated Reference Model

Model
COMPONENTS FIGURE 1. Component and metadata events

Each component can send and receive metatdata events from its predecessor
and successor. A component decides whether to use the metadata event based
on its own criteria. Each component propagates each metatdata event down the
chain. For example, a component that parses markup declarations would send
the entity declarations as a metadata event, and a component that was the entity
manager would use this event to load its internal tables.

NOTE: Though this could be used for a design, the intention of the reference
model is to facilitate clear and rigorous exposition. An actual design could, for
example, broadcast events to all components, use a listener system, or use a
global metadata store.

FIGURE 2. A component with metadata and forward data events

Each component can send forward data events to its successor. A component
acts on the incoming data events and passes them on or generates some other
events in response.

A component may propagate forward data events it does not recognize, to allow
robust filters. For example, a component that performs newline normalization
could receive characters for its incoming data events and replace Macintosh
newlines with XML newlines in the outgoing data events. Data events can
include what ISO 8879 terms signals.

<<component>>

Component
1

<<component>>

Component
2

<<metadata>>

<<component>>

Component
1

<<component>>

Component
2

<<metadata>>

<<data event>>
DISARM — Document Information Set Articulated Reference Model 3

Model
NOTE: Though this could be used for a design, in a streaming context, the
intention of the reference model is to facilitate clear and rigorous exposition. An
actual design could, for example, send references to some external text file or
GROVE.

The peek abstraction is available on data events, as a shorthand for a component
reading some data events and them pushing them back in a control event.
Components that are merely filters should propagate control events to their
predecessor, to allow pushback control events with subsequent mode-changing
control events.

FIGURE 3. A component with metadata and data events, and control events

Each component can send back control events to its predecessor. A component
acts on the incoming control events and passes them back or generates some
other events in response. A component may propagate back control events it
does not recognize, to allow robust filters.

NOTE: Though this could be used for a design, the intention of the reference
model is to facilitate clear and rigorous exposition. An actual design could, for
example, use function calls, non-blocking IO, etc.

FIGURE 4. A chain of three components

Above is a simple example. This markup language is modeled using three

<<component>>

Component
1

<<component>>

Component
2

<<metadata>>

<<data event>>

<<control event>>

<<component>>

File Reader

<<component>>

Scanner
<<component>>

Parser<<metadata>>

<<data event>>

<<control event>>

<<metadata>>

<<data event>>

<<control event>>
4 DISARM — Document Information Set Articulated Reference Model

Model
components:

1. A file reader converts bits to characters, and passes the characters as data
events to the scanner, terminating with an end-of-file data event.

2. The scanner reads the characters, and passes the tokens as data events to the
parser.

3. The parser reads the tokens, and parses them against some internal grammar.

Within this framework both push-style data flows (where the data event comes
first, with the control event acknowledging it) or pull-style data flows (where
the control event requests the next data event) are possible. Indeed, mixtures are
possible: for example where the scanner requests characters from the file reader,
then pushes tokens to the parser.

NOTE: Though the particular event protocol could be used for a design, the
intention of the reference model is to facilitate clear and rigourous exposition.

MODULES Components can be grouped in modules, if there is no metadata dependencies
and only simple pull-request/responses or push/acknowledgment pairs of
control events.

The following example is of a parser for a simplified XML with no markup
declaration support, but with namespaces, and then XML Schema
augmentation.

FIGURE 5. Modules for an XML system

Notionally, a module contains the components. But the modules can
components can be shown in the same diagram, as in the following diagram.
This diagram is becoming quite complex; but it is the complexity of repeating
patterns not the complexity of differences. From the point of view of standards-
writing, it provides many clear positions which the rest of the text can refer to.

<<module>>

XML Parser

<<module>>

Namespace
Processor

<<module>>

Schema
Augmentator<<data event>> <<data event>>

<<control event>> <<control event>>
DISARM — Document Information Set Articulated Reference Model 5

Using the Diagrams
FIGURE 6. Modules and components for an XML system

Xinclude processing: In this case, inclusions can be handled merely as special
entity references: the URL being sent first to entity manager as a metadata
event, immediately followed by control event acting as an entity-push request.

Using the Diagrams

For DSDL, the diagrams are useful for explaining processing flow.

For explaining SGML/XML/HTML, the diagrams are useful because many
features can be expressed as components that can be inserted into the stream.

<<module>>

XML Parser

<<module>>

Na mespace
Processor

<<module>>

Schema
Augm entator

<<component>>

type attributor

<<component>>

structure validator

<<component>>

key/ unique ness checker

<<component>>

value defaulter

<<component>>

datatype validator

<<component>>

libwww

<<component>>

inte rnal entity provider

<<component>>

entity manager

<<component>>

newline discipliner

<<component>>

scanner

<<component>>

parser

<<component>>

xml:base processor

<<component>>

xm lns processor

<<component>>

xinclude processor

<<data event>> <<data event>>

<<control event>> <<control event>>

<<metadata>>

<<metadata>>

<<metadata>>

<<metadata>>

<<data event>>

<<data event>>

<<data event>>

<<data event>>

<<control event>>

<<control event>>

<<control event>>

<<control event>>

<<metadata>>

<<metadata>>

<<metadata>>

<<metadata>>

<<data event>>

<<data event>>

<<data event>>

<<data event>>

<<control event>>

<<control event>>

<<control event>>

<<control event>>

<<metadata>>

<<metadata>>

<<metadata>>

<<data event>>

<<data event>>

<<data event>>

<<control event>>

<<control event>>

<<control event>>
6 DISARM — Document Information Set Articulated Reference Model

Examples
For example, a component that performs OMITTAG YES normalization can be
placed before (or after?) the parser. Some features, such as SHORTREF YES,
are probably better left embedded into the scanner, but they could be placed
after the scanner. The LINK processor can go before (or is it after? these
diagrams makes that kind of question clear) the attribute value defaulting
module. A CONCUR YES processor can go after the scanner, to filter out tags.

Architectural processors would similarly be easier to explain, as just more
modules.

Furthermore, the diagrams can be used (in conjunction with UML activity
diagrams, perhaps) to show more complex interactions, such as white-space
movement or peeking for NAMECHARs. It seems likely to me that complex
control/data event interactions between modules represent points where
implementers are likely to experience difficulty. XML can be seen, in part, as
an attempt to reduce the need for any control events (apart from simple control
events of the get() or ack() kind) setting modes in previous components.

Examples

(I have not created drawings for these yet. The reader is invited to mentally
draw the diagrams.)

FIGURE 7. (Diagram. Components are labelled: external entity provider,
internal entity provider, entity manager, newline discipline, scanner, de-
minimizer, parser, default value decorator, ID/IDREF checker.)

This first example is for RCS SGML (eliding declaration processing).

FIGURE 8. (Diagram. Components are labelled: libwww, internal entity
provider, entity manager, newline discipline, scanner, parser, namespace, type
attribution, structure validation, value defaulting, key/uniqueness-checking,
datatype validation)

The example is of a parser for XML with no markup declarations, but with
namespaces, Xinclude processing and then XML Schema augmentation.
DISARM — Document Information Set Articulated Reference Model 7

How other Features are Supported
FIGURE 9. (Diagram: Components are labelled: storage manager, entity
manager, newline discipline, declaration scanner, declaration parser, scanner,
parser, default value decorator, ID/IDREF checker.)

This example is for XML 1.0. The declaration parser would provide metadata
events to the other components to process the XML instance. The declaration
scanner and parser would pass all data and control events through after the
internal subset had ended. A real implementation might be able to remove the
components the from the processing chain.

FIGURE 10. (Diagram. Components are labelled: external entity provide,
CATALOG entity resolver, internal entity provider, entity manager, newline
discipline, SGML declaration scanner, SGML declaration parser, markup
declaration scanner, link parser, declaration parser, scanner, concur-stripper,
de-minimizer, parser, link processor, default value decorator, AF processor,
LT processor.)

This example is for full-blown SGML, this time with OASIS CATALOGS,
short references, omittag minimization, CONCUR, links, architectural forms,
and data typing (eliding declaration processing.).

Short-references are explained in the following way. This scanner component
has a table of delimiter maps, loaded from metadata events from parsing the
declarations, and a stack of open maps. Control events from the parser push and
pop delimiter maps (i.e., SGML's USEMAP). When a short reference delimiter
is found, the scanner sends a control event for the entity manager to push the
entity declared for that reference (in a short reference table.)

How other Features are Supported

For XIncluded documents in other configurations, it may be better to think of
the XInclude component acting as a liaison between separate invocations of the
DISARM chain.

In the case of SUBDOC, components must have all their fields on a stack. The
declaration scanner and parser must be active during the document's life.

A control event might build the next stage or push components based on parsed
8 DISARM — Document Information Set Articulated Reference Model

Comments
declarations. For example, discovering a document starts with <?xml or
<!SGML could cause the construction of different processing chains.

The entity providers (storage managers?, data sources?) can provide data events
with character data, as CDATA, PCDATA.

There is scope for discussion on whether general entity references should
handled by the scanner, by the parser, or by a subsequent stage. If by a
subsequent stage, then marked section and declared content types need to cause
relabelling of incoming data as CDATA
and RCDATA.

Also, there is scope for discuttion on the need to support outside world at each
end? E.g. a validator may have a Boolean data event as its final output.

Comments

The complexity of a system can be judged, to a certain extent, by the level of
coupling which remains after grouping functionality into intellectually cohesive
components: in particular by the number of different control events required.
However, the length of the chain and the internal complexity of each component
are also important metrics.

To Do:

Explain how self-describing versus externally labelled is expressed

Explain handling of Inline markup vs. declarations v external markup.
Explain how SUBDOC and XInclude fits in
DISARM — Document Information Set Articulated Reference Model 9

	DISARM — Document Information Set Articulated Reference Model
	Motivation
	Model
	Using the Diagrams
	Examples
	How other Features are Supported
	Comments
	To Do:

