
© ISO/IEC 2006 — All rights reserved

Document type: International Standard
Document subtype:
Document stage: (50) Approval
Document language: E

STD Version 2.1

ISO/IEC JTC 1/SC 29
Date: 2006-09-29

ISO/IEC FDIS 14496-22:2006(E)

ISO/IEC JTC 1/SC 29/WG 11

Secretariat:

Information technology — Coding of audio-visual objects — Part 22:
Open Font Format
Élément introductif — Élément central — Partie 22: Titre de la partie

ISO/IEC FDIS 14496-22:2006(E)

ii © ISO/IEC 2006 — All rights reserved

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted
under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's
member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved iii

Contents Page

1 Scope..1
2 Normative References...2
3 The Open Font File Format...2
3.1 Description...2
3.2 Filenames ...2
3.3 Data Types ...2
3.4 Table Version Numbers ..3
3.5 Open Font Structure..4
3.6 TrueType Collections..6
4 Open Font Tables ..8
4.1 General ...8
4.2 Required Common Tables..8
4.3 TrueType OutlineTables..50
4.4 PostScript Outline Tables...55
4.5 Bitmap Glyph Tables...57
4.6 Optional Tables..69
5 Advanced Open Font Layout Tables ...94
5.1 Advanced Open Font Layout Extensions ...94
5.2 OFF Layout Common Table Formats ..99
5.3 Advanced Typographic Tables ..121
5.4 Layout Tag Registry ..266
6 Recommendations for OFF Fonts ...341
7 General Recommendations..346
7.1 Optimized Table Ordering ..346
7.2 Non-Standard (Symbol) Fonts ...346
7.3 Device Resolutions ...346
7.4 Baseline to Baseline Distances ...347
7.5 Style Bits ..348
7.6 Drop-out Control..348
7.7 Embedded Bitmaps...348
7.8 OFF CJK Font Guidelines...348
Annex A (informative) Patent Statements..349
Annex B (informative) Font Class and Font Subclass parameters..350
B.1 Introduction..350
B.2 sFamilyClass..350
B.3 Class ID=0 No Classification ..350
B.4 Class ID=1 Oldstyle Serifs ..350
B.5 Class ID=2 Transitional Serifs ..352
B.6 Class ID=3 Modern Serifs ...352
B.7 Class ID=4 Clarendon Serifs ..353
B.8 Class ID=5 Slab Serifs...354
B.9 Class ID=6 (reserved for future use) ...355
B.10 Class ID=7 Freeform Serifs...355
B.11 Class ID=8 Sans Serifs..356
B.12 Class ID=9 Ornamentals ...357
B.13 Class ID=10 Scripts ...358
B.14 Class ID=11 (reserved for future use) ...359
B.15 Class ID=12 Symbolic ...360

ISO/IEC FDIS 14496-22:2006(E)

iv © ISO/IEC 2006 — All rights reserved

B.16 Class ID=13 Reserved .. 361
B.17 Class ID=14 Reserved .. 361
Annex C (informative) Earlier versions of OS/2 – OS/2 and Windows Metrics 362
C.1 OS/2 - OS/2 and Windows Metrics (Version 0)... 362
C.2 OS/2 - OS/2 and Windows Metrics (Version 1)... 383
C.3 OS/2 - OS/2 and Windows Metrics (Version 2)... 409

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496-22 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology,
Subcommittee SC 29, Coding of Audio, Picture, Multimedia and Hypermedia Information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of
audio-visual objects:

 Part 1: Systems

 Part 2: Visual

 Part 3: Audio

 Part 4: Conformance testing

 Part 5: Reference software

 Part 6: Delivery Multimedia Integration Framework (DMIF)

 Part 7: Optimized reference software for coding of audio-visual objects

 Part 8: Carriage of ISO/IEC 14496 contents over IP networks

 Part 9: Reference hardware description

 Part 10: Advanced Video Coding

 Part 11: Scene description and application engine

 Part 12: ISO base media file format

 Part 13: Intellectual Property Management and Protection (IPMP) extensions

 Part 14: MP4 file format

ISO/IEC FDIS 14496-22:2006(E)

vi © ISO/IEC 2006 — All rights reserved

 Part 15: Advanced Video Coding (AVC) file format

 Part 16: Animation Framework eXtension (AFX)

 Part 17: Streaming text format

 Part 18: Font compression and streaming

 Part 19: Synthesized texture stream

 Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

 Part 21: MPEG-J GFX

 Part 22: Open Font Format

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved vii

Introduction

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained
from the companies listed in Annex A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified in Annex A. ISO and IEC shall not be held responsible for identifying any or
all such patent rights.

FINAL DRAFT INTERNATIONAL STANDARD ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 1

Information technology — Coding of audio-visual objects —
Part 22: Open Font Format

1 Scope

This International standard specifies the Open Font Format (OFF) specification, the TrueType™i and Compact
Font Format (CFF) outline formats, and the TrueType hinting language. Many references to both TrueType
and PostScript exist throughout this document, as Open Font Format fonts combine the two technologies.
NOTE This specification is based on the OpenType® ii version 1.4 font format specification, and is technically
equivalent to that specification.

Multimedia applications require a broad range of media-related standards. In addition to the typical audio and
video applications, multimedia presentations include scalable 2D graphics and text supporting all languages of
the world. Faithful reproduction of scalable multimedia content requires additional components including
scalable font technology. The Open Font Format is an extension of the TrueType font format, adding support
for PostScript font data. OFF fonts and the operating system services which support OFF fonts provide users
with a simple way to install and use fonts, whether the fonts contain TrueType outlines or CFF (PostScript)
outlines.

The Open Font Format addresses the following goals:

• broader multi-platform support

• excellent support for international character sets

• excellent protection for font data

• smaller file sizes to make font distribution more efficient

• excellent support for advanced typographic control

PostScript®iii data included in OFF fonts may be directly rasterized or converted to the TrueType outline
format for rendering, depending on which rasterizers have been installed in the host operating system. But the
user model is the same: OFF fonts just work. Users will not need to be aware of the type of outline data in
OFF fonts. And font creators can use whichever outline format they feel provides the best set of features for
their work, without worrying about limiting a font's usability.

OFF fonts can include the OFF Layout tables, which allow font creators to design broader international and
high-end typographic fonts. The OFF Layout tables contain information on glyph substitution, glyph positioning,
justification, and baseline positioning, enabling text-processing applications to improve text layout.

As with TrueType fonts, OFF fonts allow the handling of large glyph sets using Unicode encoding. Such
encoding allows broad international support, as well as support for typographic glyph variants.

Additionally, OFF fonts may contain digital signatures, which allows operating systems and browsing
applications to identify the source and integrity of font files, including embedded font files obtained in web

ISO/IEC FDIS 14496-22:2006(E)

2 © ISO/IEC 2006 — All rights reserved

documents, before using them. Also, font developers can encode embedding restrictions in OFF fonts which
cannot be altered in a font signed by the developer.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

ISO/IEC 14496-18, Information technology — Coding of audio-visual objects — Part 18: Font compression
and streaming

TrueType Instruction Set, <http://www.microsoft.com/typography/otspec/ttinst.htm>

Unicode 4.1.0, <http://www.unicode.org/versions/Unicode4.1.0/>

3 The Open Font File Format

3.1 Description
An Open font file contains data, in table format, that comprises either a TrueType or a PostScript outline font.
Rasterizers use combinations of data from the tables contained in the font to render the TrueType or
PostScript glyph outlines. Some of this supporting data is used no matter which outline format is used; some
of the supporting data is specific to either TrueType or PostScript.

3.2 Filenames
OFF fonts may have the extension .OTF or .TTF, depending on the kind of outlines in the font and the
creator's desire for compatibility on systems without native OFF support.

• In all cases, fonts with only CFF data (no TrueType outlines) always have an .OTF extension.

• Fonts containing TrueType outlines may have either .OTF or .TTF, depending on the desire for
backward compatibility on older systems or with previous versions of the font. TrueType Collection
fonts should have a .TTC extension whether or not the fonts have OFF layout tables present.

3.3 Data Types
The following data types are used in the OFF font file. All OFF fonts use big-endian (network byte order):

Data Type Description

BYTE 8-bit unsigned integer.

CHAR 8-bit signed integer.

USHORT 16-bit unsigned integer.

SHORT 16-bit signed integer.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 3

ULONG 32-bit unsigned integer.

LONG 32-bit signed integer.

Fixed 32-bit signed fixed-point number (16.16)

FUNIT Smallest measurable distance in the em space.

FWORD 16-bit signed integer (SHORT) that describes a quantity in
FUnits.

UFWORD 16-bit unsigned integer (USHORT) that describes a
quantity in FUnits.

F2DOT14 16-bit signed fixed number with the low 14 bits of fraction
(2.14).

LONGDATETIME Date represented in number of seconds since 12:00
midnight, January 1, 1904. The value is represented as a
signed 64-bit integer.

Tag Array of four uint8s (length = 32 bits) used to identify a
script, language system, feature, or baseline

GlyphID Glyph index number, same as uint16(length = 16 bits)

Offset Offset to a table, same as uint16 (length = 16 bits), NULL
Offset = 0x0000

The F2DOT14 format consists of a signed, 2's complement mantissa and an unsigned fraction. To compute
the actual value, take the mantissa and add the fraction. Examples of 2.14 values are:

Decimal
Value Hex Value Mantissa Fraction

1.999939 0x7fff 1 16383/16384

1.75 0x7000 1 12288/16384

0.000061 0x0001 0 1/16384

0.0 0x0000 0 0/16384

-0.000061 0xffff -1 16383/16384

-2.0 0x8000 -2 0/16384

3.4 Table Version Numbers
Most tables have version numbers, and the version number for the entire font is contained in the Table
Directory. It should be noted that there are two different table version number types, each with its own
numbering scheme. USHORT version numbers always start at zero (0). Fixed version numbers start at one
(1.0 or 0x00010000), except where noted (EBDT, EBLC and EBSC tables).

ISO/IEC FDIS 14496-22:2006(E)

4 © ISO/IEC 2006 — All rights reserved

Implementations reading tables must include code to check version numbers so that if and when the format
and therefore the version number changes, older implementations will reject newer versions gracefully, if the
changes are incompatible.

When a Fixed number is used as a version, the upper 16 bits comprise a major version number, and the lower
16 bits a minor. Tables with non-zero minor version numbers always specify the literal value of the version
number since the normal representation of Fixed numbers is not necessarily followed. For example, the
version number of 'maxp' table version 0.5 is 0x00005000, and that of 'vhea' table version 1.1 is 0x00011000.
If an implementation understands a major version number, then it can safely proceed reading the table. The
minor version number indicates extensions to the format that are undetectable by implementations that do not
support them.

The only exception to this is the Offset Table's sfnt version. This serves solely to identify whether the OFF font
contains TrueType outlines (a value of 1.0) or CFF data (the tag 'OTTO'), as described in subclause 3.5,
'Open Font Structure.'

When a USHORT number is used to indicate version, it should be treated as though it were a minor version
number; i.e., all format changes are compatible extensions.

3.5 Open Font Structure
A key characteristic of the OFF format is the TrueType sfnt "wrapper", which provides organization for a
collection of tables in a general and extensible manner.

The OFF font with the Offset Table. If the font file contains only one font, the Offset Table will begin at byte 0
of the file. If the font file is a TrueType collection, the beginning point of the Offset Table for each font is
indicated in the TTCHeader.

Offset Table

Type Name Description

Fixed sfnt version 0x00010000 for version 1.0 or 'OTTO'.

USHORT numTables Number of tables.

USHORT searchRange (Maximum power of 2 <= numTables) x 16.

USHORT entrySelector Log2(maximum power of 2 <= numTables).

USHORT rangeShift NumTables x 16-searchRange.

OFF fonts that contain TrueType outlines should use the value of 1.0 for the sfnt version. OFF fonts containing
CFF data should use the tag 'OTTO' as the sfnt version number.

3.5.1 Table Directory

The Offset Table is followed immediately by the Table Directory entries. Entries in the Table Directory must be
sorted in ascending order by tag. Offset values in the Table Directory are measured from the start of the font
file.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 5

Table Directory

Type Name Description

ULONG tag 4 -byte identifier.

ULONG checkSum CheckSum for this table.

ULONG Offset Offset from beginning of TrueType font
file.

ULONG length Length of this table.

The Table Directory makes it possible for a given font to contain only those tables it actually needs. As a result
there is no standard value for numTables.

Tags are the names given to tables in the OFF font file. All tag names consist of four characters. Names with
less than four letters are allowed if followed by the necessary trailing spaces. All tag names defined within a
font (e.g., table names, feature tags, language tags) must be built from printing characters represented by
ASCII values 32-126.
NOTE Tag names are case sensitive.

3.5.2 Calculating Checksums

Table checksums are the unsigned sum of the longs of a given table. In C, the following function can be used
to determine a checksum:

ULONG
CalcTableChecksum(ULONG *Table, ULONG Length)
{
ULONG Sum = 0L;
ULONG *Endptr = Table+((Length+3) & ~3) / sizeof(ULONG);

while (Table < EndPtr)
 Sum += *Table++;
return Sum;
}

NOTE This function implies that the length of a table must be a multiple of four bytes. In fact, a font is not considered
structurally proper without the correct padding. All tables must begin on four byte boundries, and any remaining space
between tables is padded with zeros. The length of all tables should be recorded in the table directory with their actual
length (not their padded length).

To calculate the checkSum for the 'head' table which itself includes the checkSumAdjustment entry for the
entire font, do the following:

1. Set the checkSumAdjustment to 0.

2. Calculate the checksum for all the tables including the 'head' table and enter that value into the table
directory.

3. Calculate the checksum for the entire font.

4. Subtract that value from the hex value B1B0AFBA.

5. Store the result in checkSumAdjustment.

The checkSum for the head table which includes the checkSumAdjustment entry for the entire font is now
incorrect. That is not a problem. Do not change it. An application attempting to verify that the 'head' table has

ISO/IEC FDIS 14496-22:2006(E)

6 © ISO/IEC 2006 — All rights reserved

not changed should calculate the checkSum for that table by not including the checkSumAdjustment value,
and compare the result with the entry in the table directory.

3.6 TrueType Collections
A TrueType Collection (TTC) is a means of delivering multiple OFF fonts in a single file structure. TrueType
Collections are most useful when the fonts to be delivered together share many glyphs in common. By
allowing multiple fonts to share glyph sets, TTCs can result in a significant saving of file space.

For example, a group of Japanese fonts may each have their own designs for the kana glyphs, but share
identical designs for the kanji. With ordinary OFF font files, the only way to include the common kanji glyphs is
to copy their glyph data into each font. Since the kanji represent much more data than the kana, this results in
a great deal of wasteful duplication of glyph data. TTCs were defined to solve this problem.

The CFF rasterizer does not currently support TTC files.

3.6.1 The TTC File Structure

The TTC File Structure

A TrueType Collection file consists of a single TTC Header table, one or more Offset Tables with Table
Directories, and a number of OFF tables. The TTC Header must be located at the beginning of the TTC file.

The TTC file must contain a complete Offset Table and Table Directory for each font. A TTC file Table
Directory has exactly the same format as a TTF file Table Directory. The table Offsets in all Table Directories
within a TTC file are measured from the beginning of the TTC file.

Each OFF table in a TTC file is referenced through the Offset Table and Table Directory of each font which
uses that table. Some of the OFF tables must appear multiple times, once for each font included in the TTC;
while other tables may be shared by multiple fonts in the TTC.

As an example, consider a TTC file which combines two Japanese fonts (Font1 and Font2). The fonts have
different kana designs (Kana1 and Kana2) but use the same design for kanji. The TTC file contains a single
'glyf' table which includes both designs of kana together with the kanji; both fonts' Table Directories point to
this 'glyf' table. But each font's Table Directory points to a different 'cmap' table, which identifies the glyph set
to use. Font1's 'cmap' table points to the Kana1 region of the 'loca' and 'glyf' tables for kana glyphs, and to the
kanji region for the kanji. Font2's 'cmap' table points to the Kana2 region of the 'loca' and 'glyf' tables for kana
glyphs, and to the same kanji region for the kanji.

The tables that should have a unique copy per font are those that are used by the system in identifying the
font and its character mapping, including 'cmap', 'name', and 'OS/2'. The tables that should be shared by fonts
in the TTC are those that define glyph and instruction data or use glyph indices to access data: 'glyf', 'loca',
'hmtx', 'hdmx', 'LTSH', 'cvt ', 'fpgm', 'prep', 'EBLC', 'EBDT', 'EBSC', 'maxp', and so on. In practice, any tables
which have identical data for two or more fonts may be shared.
NOTE Tools are available to help build .TTC files. The process involves paying close attention the issue of glyph
renumbering in a font and the side effects that can result, in the 'cmap' table and elsewhere. The fonts to be merged must
also have compatible TrueType instructions-that is, their pre-programs, function definitions, and control values must not
conflict.

TrueType Collection files use the filename suffix .TTC.

3.6.2 TTC Header

There are two versions of the TTC Header: Version 1.0 has been used for TTC files without digital signatures.
Version 2.0 can be used for TTC files with or without digital signatures -- if there's no signature, then the last
three fields of the version 2.0 header are left null.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 7

If a digital signature is used, the DSIG table for the file must be the last table in the TTC file. Signatures in a
TTC file are expected to be Format 1 signatures.

The purpose of the TTC Header table is to locate the different Offset Tables within a TTC file. The TTC
Header is located at the beginning of the TTC file (Offset = 0). It consists of an identification tag, a version
number, a count of the number of OFF fonts in the file, and an array of Offsets to each Offset Table.

TTC Header Version 1.0

Type Name Description

TAG TTCTag TrueType Collection ID string: 'ttcf'

ULONG Version Version of the TTC Header (1.0), 0x00010000

ULONG numFonts Number of fonts in TTC

ULONG OffsetTable[numFonts] Array of Offsets to the OffsetTable for each font from the beginning
of the file

TTC Header Version 2.0

Type Name Description

TAG TTCTag TrueType Collection ID string: 'ttcf'

ULONG Version Version of the TTC Header (2.0), 0x00020000

ULONG numFonts Number of fonts in TTC

ULONG OffsetTable[numFonts] Array of Offsets to the OffsetTable for each font from the beginning of
the file

ULONG ulDsigTag Tag indicating that a DSIG table exists, 0x44534947 ('DSIG') (null if
no signature)

ULONG ulDsigLength The length (in bytes) of the DSIG table (null if no signature)

ULONG ulDsigOffset The Offset (in bytes) of the DSIG table from the beginning of the TTC
file (null if no signature)

ISO/IEC FDIS 14496-22:2006(E)

8 © ISO/IEC 2006 — All rights reserved

4 Open Font Tables

4.1 General
The rasterizer has a much easier time traversing tables if they are padded so that each table begins on a 4-
byte boundary. All tables shall be long-aligned and padded with zeroes.

4.2 Required Common Tables
Whether TrueType or PostScript outlines are used in an OFF font, the following tables are required for the font
to function correctly:

Tag Name

cmap Character to glyph mapping

head Font header

hhea Horizontal header

hmtx Horizontal metrics

maxp Maximum profile

name Naming table

OS/2 OS/2 and Windows specific metrics

post PostScript information

4.2.1 cmap – Character to Glyph Index Mapping Table

4.2.1.1 Table Structure

This table defines the mapping of character codes to the glyph index values used in the font. It may contain
more than one subtable, in order to support more than one character encoding scheme. Character codes that
do not correspond to any glyph in the font should be mapped to glyph index 0. The glyph at this location must
be a special glyph representing a missing character, commonly known as .notdef.

The table header indicates the character encodings for which subtables are present. Each subtable is in one
of seven possible formats and begins with a format code indicating the format used.

The Character To Glyph Index Mapping Table is organized as follows:

 cmap Header

Type Name Description

USHORT Version Table version number (0)

USHORT numTables Number of encoding tables that follow

The cmap table header is followed by an array of encoding records that specify the particular encoding and
the Offset to the subtable for that encoding. The number of encoding records is numTables. An encoding
record entry looks like:

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 9

 Encoding Record

Type

Name Description

USHORT platformID Platform ID.

USHORT encodingID Platform-specific encoding ID.

ULONG Offset Byte Offset frombeginning of table to the subtable for this
encoding

The platform ID and platform-specific encoding ID in the header entry (and, in the case of the Macintosh
platform, the language field in the subtable itself) are used to specify a particular 'cmap' encoding. The header
entries must be sorted first by platform ID, then by platform-specific encoding ID, and then by the version field
in the corresponding subtable. Each platform ID, platform-specific encoding ID, and subtable language
combination may appear only once in the 'cmap' table.

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1.
When building a symbol font for Windows, the platform ID should be 3 and the encoding ID should be 0. When
building a font that will be used on the Macintosh, the platform ID should be 1 and the encoding ID should be
0.

All Windows Unicode encodings (Platform ID = 3, Encoding ID = 1) must provide at least a Format 4 'cmap'
subtable. If the font is meant to support supplementary Unicode characters, it will additionally need a Format
12 subtable with a platform encoding ID 10. The contents of the Format 12 subtable need to be a superset of
the contents of the Format 4 subtable. It is strongly recommended using a Unicode 'cmap' for all fonts.
However, some other encodings that appear in current fonts follow:

Windows Encodings

Platform ID Encoding ID Description

3 0 Symbol

3 1 Unicode

3 2 ShiftJIS

3 3 PRC

3 4 Big5

3 5 Wansung

3 6 Johab

3 7 Reserved

3 8 Reserved

ISO/IEC FDIS 14496-22:2006(E)

10 © ISO/IEC 2006 — All rights reserved

3 9 Reserved

3 10 UCS-4

4.2.1.2 OTF Windows NT Compatibility Mapping

 If a platform ID 4 (custom), encoding ID 0-255 (OTF Windows NT compatibility mapping) 'cmap' encoding is
present in an OFF font with CFF outlines, then the OTF font driver in Windows NT will: (a) superimpose the
glyphs encoded at character codes 0-255 in the encoding on the corresponding Windows character set (code
page 1252) Unicode values in the Unicode encoding it reports to the system; (b) add Windows character set
(CharSet 0) to the list of CharSets supported by the font; and (c) consider the value of the encoding ID to be a
Windows CharSet value and add it to the list of CharSets supported by the font.
NOTE This 'cmap' subtable must use Format 0 or 6 for its subtable, and the encoding must be identical to the CFF's
encoding.

4.2.1.3 cmap Subtable formats

This field must be set to zero for all cmap subtables whose platform IDs are other than Macintosh (platform ID 1). For
cmap subtables whose platform IDs are Macintosh, set this field to the Macintosh language ID of the cmap subtable plus
one, or to zero if the cmap subtable is not language-specific. For example, a Mac OS Turkish cmap subtable must set this
field to 18, since the Macintosh language ID for Turkish is 17. A Mac OS Roman cmap subtable must set this field to 0,
since Mac OS Roman is not a language-specific encoding.

4.2.1.3.1 Format 0: Byte Encoding Table

This is the Macintosh platform standard character to glyph index mapping table which is available via the
informative reference 5 in the bibliography.

Type Name Description

USHORT format Format number is set to 0.

USHORT length This is the length in bytes of the subtable.

USHORT language Please see "Note on the language field in 'cmap' subtables" in this document.

BYTE glyphIdArray[256] An array that maps character codes to glyph index values.

This is a simple 1 to 1 mapping of character codes to glyph indices. The glyph set is limited to 256. If this
format is used to index into a larger glyph set, only the first 256 glyphs will be accessible.

4.2.1.3.2 Format 2: High Byte Mapping through Table

This subtable is useful for the national character code standards used for Japanese, Chinese, and Korean
characters. These code standards use a mixed 8/16-bit encoding, in which certain byte values signal the first
byte of a 2-byte character (but these values are also legal as the second byte of a 2-byte character).

In addition, even for the 2-byte characters, the mapping of character codes to glyph index values depends
heavily on the first byte. Consequently, the table begins with an array that maps the first byte to a 4-word
subHeader. For 2-byte character codes, the subHeader is used to map the second byte's value through a
subArray, as described below. When processing mixed 8/16-bit text, subHeader 0 is special: it is used for

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 11

single-byte character codes. When subHeader zero is used, a second byte is not needed; the single byte
value is mapped through the subArray.

Type Name Description

USHORT format Format number is set to 2.

USHORT length This is the length in bytes of the subtable.

USHORT language Please see "Note on the language field in 'cmap'
subtables" in this document.

USHORT subHeaderKeys[256] Array that maps high bytes to subHeaders: value is
subHeader index * 8.

4 words struct subHeaders[] Variable-length array of subHeader structures.

USHORT glyphIndexArray[] Variable-length array containing subarrays used for
mapping the low byte of 2-byte characters.

A subHeader is structured as follows:

Type Name Description

USHORT firstCode First valid low byte for this subHeader.

USHORT entryCount Number of valid low bytes for this subHeader.

SHORT idDelta See text below.

USHORT idRangeOffset See text below.

The firstCode and entryCount values specify a subrange that begins at firstCode and has a length equal to the
value of entryCount. This subrange stays within the 0-255 range of the byte being mapped. Bytes outside of
this subrange are mapped to glyph index 0 (missing glyph).The Offset of the byte within this subrange is then
used as index into a corresponding subarray of glyphIndexArray. This subarray is also of length entryCount.
The value of the idRangeOffset is the number of bytes past the actual location of the idRangeOffset word
where the glyphIndexArray element corresponding to firstCode appears.

Finally, if the value obtained from the subarray is not 0 (which indicates the missing glyph), you should add
idDelta to it in order to get the glyphIndex. The value idDelta permits the same subarray to be used for several
different subheaders. The idDelta arithmetic is modulo 65536.

4.2.1.3.3 Format 4: Segment Mapping to Delta Values

This is the Windows standard character to glyph index mapping table for fonts that support Unicode ranges
other than the range [U+D800 - U+DFFF] (defined as Surrogates Area, in the Unicode Standard) which is
used for UCS-4 characters. If a font supports this character range (i.e. in turn supports the UCS-4 characters)
a subtable in this format with a platform specific encoding ID 1 is yet needed, in addition to a subtable in
format 12 with a platform specific encoding ID 10. Please see details on format 12 below, for fonts that
support UCS-4 characters on Windows.

This format is used when the character codes for the characters represented by a font fall into several
contiguous ranges, possibly with holes in some or all of the ranges (that is, some of the codes in a range may

ISO/IEC FDIS 14496-22:2006(E)

12 © ISO/IEC 2006 — All rights reserved

not have a representation in the font). The format-dependent data is divided into three parts, which must occur
in the following order:

1. A four-word header gives parameters for an optimized search of the segment list;

2. Four parallel arrays describe the segments (one segment for each contiguous range of codes);

3. A variable-length array of glyph IDs (unsigned words).

Type Name Description

USHORT format Format number is set to 4.

USHORT length This is the length in bytes of the subtable.

USHORT language Please see "Note on the language field in 'cmap' subtables" in this document.

USHORT segCountX2 2 x segCount.

USHORT searchRange 2 x (2**floor(log2(segCount)))

USHORT entrySelector log2(searchRange/2)

USHORT rangeShift 2 x segCount - searchRange

USHORT endCode[segCount] End characterCode for each segment, last=0xFFFF.

USHORT reservedPad Set to 0.

USHORT startCode[segCount] Start character code for each segment.

SHORT idDelta[segCount] Delta for all character codes in segment.

USHORT idRangeOffset[segCount] Offsets into glyphIdArray or 0

USHORT glyphIdArray[] Glyph index array (arbitrary length)

The number of segments is specified by segCount, which is not explicitly in the header; however, all of the
header parameters are derived from it. The searchRange value is twice the largest power of 2 that is less than
or equal to segCount. For example, if segCount=39, we have the following:

segCountX2 78

searchRange 64 (2 * largest power of 2 <=39)

entrySelector 5 log2 (32)

rangeShift 14 2 x 39 – 64

Each segment is described by a startCode and endCode, along with an idDelta and an idRangeOffset, which
are used for mapping the character codes in the segment. The segments are sorted in order of increasing
endCode values, and the segment values are specified in four parallel arrays. You search for the first
endCode that is greater than or equal to the character code you want to map. If the corresponding startCode
is less than or equal to the character code, then you use the corresponding idDelta and idRangeOffset to map
the character code to a glyph index (otherwise, the missingGlyph is returned). For the search to terminate, the

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 13

final endCode value must be 0xFFFF. This segment need not contain any valid mappings. (It can just map the
single character code 0xFFFF to missingGlyph). However, the segment must be present.

If the idRangeOffset value for the segment is not 0, the mapping of character codes relies on glyphIdArray.
The character code Offset from startCode is added to the idRangeOffset value. This sum is used as an Offset
from the current location within idRangeOffset itself to index out the correct glyphIdArray value. This obscure
indexing trick works because glyphIdArray immediately follows idRangeOffset in the font file. The C
expression that yields the glyph index is:

*(idRangeOffset[i]/2
+ (c - startCount[i])
+ &idRangeOffset[i])

The value c is the character code in question, and i is the segment index in which c appears. If the value
obtained from the indexing operation is not 0 (which indicates missingGlyph), idDelta[i] is added to it to get the
glyph index. The idDelta arithmetic is modulo 65536.

If the idRangeOffset is 0, the idDelta value is added directly to the character code Offset (i.e. idDelta[i] + c) to
get the corresponding glyph index. Again, the idDelta arithmetic is modulo 65536.

As an example, the variant part of the table to map characters 10-20, 30-90, and 153-480 onto a contiguous
range of glyph indices may look like this:

segCountX2: 8

searchRange: 8

entrySelector: 4

rangeShift: 0

endCode: 20 90 480 0Xffff

reservedPad: 0

startCode: 10 30 153 0Xffff

idDelta: -9 -18 -80 1

idRangeOffset: 0 0 0 0

This table performs the following mappings:
10 -> 10 - 9 = 1
20 -> 20 - 9 = 11
30 -> 30 - 18 = 12
90 -> 90 - 18 = 72
...and so on.

It should be noted that the delta values could be reworked so as to reorder the segments.

4.2.1.3.4 Format 6: Trimmed Table Mapping

Type Name Description

USHORT format Format number is set to 6.

ISO/IEC FDIS 14496-22:2006(E)

14 © ISO/IEC 2006 — All rights reserved

USHORT length This is the length in bytes of the subtable.

USHORT language Please see "Note on the language field in 'cmap' subtables" in this document.

USHORT firstCode First character code of subrange.

USHORT entryCount Number of character codes in subrange.

USHORT glyphIdArray [entryCount] Array of glyph index values for character codes in the range.

The firstCode and entryCount values specify a subrange (beginning at firstCode,length = entryCount) within
the range of possible character codes. Codes outside of this subrange are mapped to glyph index 0. The
Offset of the code (from the first code) within this subrange is used as index to the glyphIdArray, which
provides the glyph index value.
NOTE Supporting 4-byte character codes: While the four existing 'cmap' subtable formats which currently exist have
served us well, the introduction of the Surrogates Area in the Unicode Standard has stressed them past the point of utility.
This clause specifies three formats, format 8, 10 and 12; which directly support 4-byte character codes. A major change
introduced with these three formats is a more pure 32-bit orientation. The 'cmap' table version number will continue to be
0x0000, for those fonts that make use of these formats.

4.2.1.3.5 Format 8: mixed 16-bit and 32-bit coverage

Format 8 is a bit like format 2, in that it provides for mixed-length character codes. If a font contains characters
from the Unicode Surrogates Area (U+D800-U+DFFF), which are UCS-4 characters; it's likely that it will also
include other, regular 16-bit Unicodes as well. We therefore need a format to map a mixture of 16-bit and 32-
bit character codes, just as format 2 allows a mixture of 8-bit and 16-bit codes. A simplifying assumption is
made: namely, that there are no 32-bit character codes which share the same first 16 bits as any 16-bit
character code. This means that the determination as to whether a particular 16-bit value is a standalone
character code or the start of a 32-bit character code can be made by looking at the 16-bit value directly, with
no further information required.

Here's the format 8 subtable format:

Type Name Description

USHORT format Subtable format; set to 8.

USHORT reserved Reserved; set to 0

ULONG length Byte length of this subtable (including the header)

ULONG language Please see "Note on the language field in 'cmap' subtables" in this document.

BYTE is32[8192] Tightly packed array of bits (8K bytes total) indicating whether the particular 16-bit (index)
value is the start of a 32-bit character code

ULONG nGroups Number of groupings which follow

Here follow the individual groups. Each group has the following format:

Type Name Description

ULONG startCharCode First character code in this group; note that if this group is for one or more 16-bit character
codes (which is determined from the is32 array), this 32-bit value will have the high 16-bits

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 15

set to zero

ULONG endCharCode Last character code in this group; same condition as listed above for the startCharCode

ULONG startGlyphID Glyph index corresponding to the starting character code

A few notes here. The endCharCode is used, rather than a count, because comparisons for group matching
are usually done on an existing character code, and having the endCharCode be there explicitly saves the
necessity of an addition per group. Groups must be sorted by increasing startCharCode. A group's
endCharCode must be less than the startCharCode of the following group, if any.

To determine if a particular word (cp) is the first half of 32-bit code points, one can use an expression such as
(is32[cp / 8] & (1 << (7 - (cp % 8)))). If this is non-zero, then the word is the first half of a 32-bit code
point.

0 is not a special value for the high word of a 32-bit code point. A font may not have both a glyph for the code
point 0x0000 and glyphs for code points with a high word of 0x0000.

The presence of the packed array of bits indicating whether a particular 16-bit value is the start of a 32-bit
character code is useful even when the font contains no glyphs for a particular 16-bit start value. This is
because the system software often needs to know how many bytes ahead the next character begins, even if
the current character maps to the missing glyph. By including this information explicitly in this table, no
"secret" knowledge needs to be encoded into the OS.

Although this format might work advantageously on some platforms for non-Unicode encodings, Windows
does not support it for Unicode encoded UCS-4 characters.

4.2.1.3.6 Format 10: Trimmed array

Format 10 is a bit like format 6, in that it defines a trimmed array for a tight range of 32-bit character codes:

Type Name Description

USHORT format Subtable format; set to 10.

USHORT reserved Reserved; set to 0

ULONG length Byte length of this subtable (including the header)

ULONG language Please see "Note on the language field in 'cmap' subtables" in this document.

ULONG startCharCode First character code covered

ULONG numChars Number of character codes covered

USHORT glyphs[] Array of glyph indices for the character codes covered

4.2.1.3.7 Format 12: Segmented Coverage

This is the Windows platform standard character to glyph index mapping table for fonts supporting the UCS-4
characters in the Unicode Surrogates Area (U+D800 - U+DFFF). It is a bit like format 4, in that it defines
segments for sparse representation in 4-byte character space. Here's the subtable format:

ISO/IEC FDIS 14496-22:2006(E)

16 © ISO/IEC 2006 — All rights reserved

Type Name Description

USHORT format Subtable format; set to 12.

USHORT reserved Reserved; set to 0

ULONG length Byte length of this subtable (including the header)

ULONG language Please see "Note on the language field in 'cmap' subtables" in this document.

ULONG nGroups Number of groupings which follow

Fonts providing Unicode encoded UCS-4 character support for Windows 2000 and later, need to have a
subtable with platform ID 3, platform specific encoding ID 1 in format 4; and in addition, need to have a
subtable for platform ID 3, platform specific encoding ID 10 in format 12. Please note that the content of
format 12 subtable, needs to be a super set of the content in the format 4 subtable. The format 4 subtable
needs to be in the cmap table to enable backward compatibility needs.

Here follow the individual groups, each of which has the following format:

Type Name Description

ULONG startCharCode First character code in this group

ULONG endCharCode Last character code in this group

ULONG startGlyphID Glyph index corresponding to the starting character code

Groups must be sorted by increasing startCharCode. A group's endCharCode must be less than the
startCharCode of the following group, if any. The endCharCode is used, rather than a count, because
comparisons for group matching are usually done on an existing character code, and having the
endCharCode be there explicitly saves the necessity of an addition per group.

4.2.2 head – Font Header

This table gives global information about the font. The bounding box values should be computed using only
glyphs that have contours. Glyphs with no contours should be ignored for the purposes of these calculations.

Type Name Description

Fixed Table version number 0x00010000 for version 1.0.

Fixed fontRevision Set by font manufacturer.

ULONG checkSumAdjustment To compute: set it to 0, sum the entire font as ULONG, then store 0xB1B0AFBA - sum.

ULONG magicNumber Set to 0x5F0F3CF5.

USHORT flags Bit 0: Baseline for font at y=0;
Bit 1: Left sidebearing point at x=0;
Bit 2: Instructions may depend on point size;
Bit 3: Force ppem to integer values for all internal scaler math; may use fractional ppem sizes if
this bit is clear;
Bit 4: Instructions may alter advance width (the advance widths might not scale linearly);
Bits 5-10: These bits are not defined in OFF
Bit 11: Font data is 'lossless,' as a result of having been compressed and

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 17

decompressed with the MicroType®iv Express engine, as defined in ISO/IEC 14496-
18.
Bit 12: Font converted (produce compatible metrics)
Bit 13: Font optimised for ClearType
Bit 14: Reserved, set to 0
Bit 15: Reserved, set to 0

USHORT unitsPerEm Valid range is from 16 to 16384. This value should be a power of 2 for fonts that have
TrueType outlines.

LONGDATETIME created Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer

LONGDATETIME modified Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer

SHORT xMin For all glyph bounding boxes.

SHORT yMin For all glyph bounding boxes.

SHORT xMax For all glyph bounding boxes.

SHORT yMax For all glyph bounding boxes.

USHORT macStyle Bit 0: Bold (if set to 1);
Bit 1: Italic (if set to 1)
Bit 2: Underline (if set to 1)
Bit 3: Outline (if set to 1)
Bit 4: Shadow (if set to 1)
Bit 5: Condensed (if set to 1)
Bit 6: Extended (if set to 1)
Bits 7-15: Reserved (set to 0).

USHORT lowestRecPPEM Smallest readable size in pixels.

SHORT fontDirectionHint 0: Fully mixed directional glyphs;
1: Only strongly left to right;
2: Like 1 but also contains neutrals;
-1: Only strongly right to left;
-2: Like -1 but also contains neutrals. 1

SHORT indexToLocFormat 0 for short Offsets, 1 for long.

SHORT glyphDataFormat 0 for current format.

1 A neutral character has no inherent directionality; it is not a character with zero (0) width. Spaces and
punctuation are examples of neutral characters. Non-neutral characters are those with inherent directionality.
For example, Roman letters (left-to-right) and Arabic letters (right-to-left) have directionality. In a "normal"
Roman font where spaces and punctuation are present, the font direction hints should be set to two (2).

It should be noted that the macStyle bits must agree with the 'OS/2' table fsSelection bits. The fsSelection bits
are used over the macStyle bits in Windows. The PANOSE values and 'post' table values are ignored for
determining bold or italic fonts.

For historical reasons, the fontRevision value contained in this table is not used by Windows to determine the
version of a font. Instead, Windows evaluates the version string (id 5) in the 'name' table.

ISO/IEC FDIS 14496-22:2006(E)

18 © ISO/IEC 2006 — All rights reserved

4.2.3 hhea – Horizontal Header

This table contains information for horizontal layout. The values in the minRightSidebearing,
minLeftSideBearing and xMaxExtent should be computed using only glyphs that have contours. Glyphs with
no contours should be ignored for the purposes of these calculations. All reserved areas must be set to 0.

Type Name Description

Fixed Table version number 0x00010000 for version 1.0.

FWORD Ascender Typographic ascent. (Distance from baseline of highest ascender)

FWORD Descender Typographic descent. (Distance from baseline of lowest descender)

FWORD LineGap Typographic line gap.
Negative LineGap values are treated as zero in Windows 3.1, System 6, and
System 7.

UFWORD advanceWidthMax Maximum advance width value in 'hmtx' table.

FWORD minLeftSideBearing Minimum left sidebearing value in 'hmtx' table.

FWORD minRightSideBearing Minimum right sidebearing value; calculated as Min (aw - lsb - (xMax - xMin)).

FWORD xMaxExtent Max(lsb + (xMax - xMin)).

SHORT caretSlopeRise Used to calculate the slope of the cursor (rise/run); 1 for vertical.

SHORT caretSlopeRun 0 for vertical.

SHORT caretOffset The amount by which a slanted highlight on a glyph needs to be shifted to produce the best appearance.
Set to 0 for non-slanted fonts

SHORT (reserved) set to 0

SHORT (reserved) set to 0

SHORT (reserved) set to 0

SHORT (reserved) set to 0

SHORT metricDataFormat 0 for current format.

USHORT numberOfHMetrics Number of hMetric entries in 'hmtx' table

NOTE The ascender, descender and linegap values in this table are Macintosh platform specific.These are not
ignored by Windows platform. They are used to identify fixed pitch fonts. Also see information in the OS/2 table.

4.2.4 hmtx – Horizontal Metrics

The type longHorMetric is defined as an array where each element has two parts: the advance width, which is
of type USHORT, and the left side bearing, which is of type SHORT. These fields are in font design units.

typedef struct _longHorMetric {

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 19

 USHORT advanceWidth;
 SHORT lsb;
} longHorMetric;

Field Type Description

hMetrics longHorMetric

[numberOfHMetrics]

Paired advance width and left side bearing values for each glyph.
The value numOfHMetrics comes from the 'hhea' table. If the font
is monospaced, only one entry need be in the array, but that entry
is required. The last entry applies to all subsequent glyphs.

leftSideBearing SHORT[] Here the advanceWidth is assumed to be the same as the
advanceWidth for the last entry above. The number of entries in
this array is derived from numGlyphs (from 'maxp' table) minus
numberOfHMetrics. This generally is used with a run of
monospaced glyphs (e.g., Kanji fonts or Courier fonts). Only one
run is allowed and it must be at the end. This allows a
monospaced font to vary the left side bearing values for each
glyph.

In CFF OFF fonts, every glyph's advanceWidth as recorded in the 'hmtx' table must be identical to its x width
in the 'CFF ' table.

For any glyph, xmax and xmin are given in 'glyf' table, lsb and aw are given in 'hmtx' table. rsb is calculated as
follows:

rsb = aw - (lsb + xmax - xmin)

If pp1 and pp2 are phantom points used to control lsb and rsb, their initial position in x is calculated as follows:
pp1 = xmin - lsb
pp2 = pp1 + aw

4.2.5 maxp – Maximum Profile

This table establishes the memory requirements for this font. Fonts with CFF data must use Version 0.5 of this
table, specifying only the numGlyphs field. Fonts with TrueType outlines must use Version 1.0 of this table,
where all data is required. Both formats of OFF require a 'maxp' table.to determine the number of glyphs in the
font.

Version 0.5

Type Name Description

Fixed Table version
number

0x00005000 for version 0.5
(It should be noted that the difference in the representation of a non-
zero fractional part, in Fixed numbers.)

USHORT numGlyphs The number of glyphs in the font.

Version 1.0

Type Name Description

Fixed Table version number 0x00010000 for version 1.0.

ISO/IEC FDIS 14496-22:2006(E)

20 © ISO/IEC 2006 — All rights reserved

USHORT numGlyphs The number of glyphs in the font.

USHORT maxPoints Maximum points in a non-composite glyph.

USHORT maxContours Maximum contours in a non-composite glyph.

USHORT maxCompositePoints Maximum points in a composite glyph.

USHORT maxCompositeContours Maximum contours in a composite glyph.

USHORT maxZones 1 if instructions do not use the twilight zone (Z0), or 2 if instructions
do use Z0; should be set to 2 in most cases.

USHORT maxTwilightPoints Maximum points used in Z0.

USHORT maxStorage Number of Storage Area locations.

USHORT maxFunctionDefs Number of FDEFs.

USHORT maxInstructionDefs Number of IDEFs.

USHORT maxStackElements Maximum stack depth2.

USHORT maxSizeOfInstructions Maximum byte count for glyph instructions.

USHORT maxComponentElements Maximum number of components referenced at "top level" for any
composite glyph.

USHORT maxComponentDepth Maximum levels of recursion; 1 for simple components.

2This includes Font and CVT Programs, as well as the instructions for each glyph.

4.2.6 name – Naming Table

4.2.6.1 Table Structure

The naming table allows multilingual strings to be associated with the OFF font file. These strings can
represent copyright notices, font names, family names, style names, and so on. To keep this table short, the
font manufacturer may wish to make a limited set of entries in some small set of languages; later, the font can
be "localized" and the strings translated or added. Other parts of the OFF font file that require these strings
can then refer to them simply by their index number. Clients that need a particular string can look it up by its
platform ID, character encoding ID, language ID and name ID. It should be noted that some platforms may
require single byte character strings, while others may require double byte strings.

For historical reasons, some applications which install fonts perform version control using Macintosh platform
(platform ID 1) strings from the 'name' table. Because of this, it is strongly recommended that the 'name' table
of all fonts include Macintosh platform strings and that the syntax of the version number (name id 5) follows
the guidelines given in this document.

The Naming Table is organized as follows:

Type Name Description

USHORT format Format selector (=0).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 21

USHORT count Number of name records.

USHORT stringOffset Offset to start of string storage (from start of table).

NameRecord nameRecord[count] The name records where count is the number of records.

(Variable) Storage for the actual string data.

Each NameRecord looks like this:

Type Name Description

USHORT platformID Platform ID.

USHORT encodingID Platform-specific encoding ID.

USHORT languageID Language ID.

USHORT nameID Name ID.

USHORT length String length (in bytes).

USHORT Offset String Offset from start of storage area (in bytes).

Following are the descriptions of the four kinds of ID. It should be noted that the specific values listed here are
the only ones that are predefined; new ones may be added by registry Similar to the character encoding
table, the NameRecords are sorted by platform ID, then platform-specific ID, then language ID, and then by
name ID.

4.2.6.2 Platform IDs, Platform-specific encoding IDs and Language IDs

Platform ID Platform name Platform-specific encoding IDs Language IDs

0 Unicode Various None

1 Macintosh Script manager code Various

2 ISO [deprecated] ISO encoding [deprecated] None

3 Windows Windows encoding Various

4 Custom Custom None

It should be noted that platform ID 2 (ISO) has been deprecated as of OFF Specification v1.3. It was intended
to represent ISO/IEC 10646, as opposed to Unicode; both standards have identical character code
assignments.

Platform ID values 240 through 255 are reserved for user-defined platforms. The DTS registry will never
assign these values to a registered platform.

Unicode platform-specific encoding IDs (platform ID = 0)

ISO/IEC FDIS 14496-22:2006(E)

22 © ISO/IEC 2006 — All rights reserved

Encoding ID Description

0 Unicode 1.0 semantics

1 Unicode 1.1 semantics

2 ISO/IEC 10646 semantics

3 Unicode 2.0 and onwards semantics, Unicode BMP only.

4 Unicode 2.0 and onwards semantics, Unicode full repertoire.

A new encoding ID for the Unicode platform will be assigned if a new version of Unicode moves characters, in
order to properly specify character code semantics. The distinction between Unicode platform-specific
encoding IDs 1 and 2 is for historical reasons only; The Unicode Standard is in fact identical in repertoire and
encoding to ISO/IEC 10646.

There are currently no language IDs defined for the Unicode platform. This means that it can be used for
encodings in the 'cmap' table but not for strings in the 'name' table.

Windows platform-specific encoding IDs (platform ID= 3)

Platform ID Encoding ID Description

3 0 Symbol

3 1 Unicode BMP only

3 2 ShiftJIS

3 3 PRC

3 4 Big5

3 5 Wansung

3 6 Johab

3 7 Reserved

3 8 Reserved

3 9 Reserved

3 10 Unicode full repertoire

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1.
When building a symbol font for Windows, the platform ID should be 3 and the encoding ID should be 0. When
building a font that will be used on the Macintosh, the platform ID should be 1 and the encoding ID should be
0.

Windows Language IDs (platform ID = 3)

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 23

The language ID (LCID in the table below) refers to a value which identifies the language in which a particular
string is written. Fifty of the language ID's are listed below, along with their corresponding code pages. There
are 85 additional language ID's assigned. For a full list, please see informative reference 1 as listed in the
bibliography.

4.2.6.3 Name IDs

The following name IDs are pre-defined and they apply to all platforms unless indicated otherwise. Name IDs
21 to 255, inclusive, are reserved for future standard names. Name IDs 256 to 32767, inclusive, are reserved
for font-specific names such as those referenced by a font's layout features.

Code Meaning

0 Copyright notice.

1 Font Family name. Up to four fonts can share the Font Family name, forming a font style
linking group (regular, italic, bold, bold italic - as defined by OS/2.fsSelection bit settings).

2 Font Subfamily name. The Font Subfamily name distiguishes the font in a group with the
same Font Family name (name ID 1). This is assumed to address style (italic, oblique)
and weight (light, bold, black, etc.). A font with no particular differences in weight or style
(e.g. medium weight, not italic and fsSelection bit 6 set) should have the string "Regular"
stored in this position.

3 Unique font identifier

4 Full font name; this should be a combination of strings 1 and 2. Exception: if the font is
"Regular" as indicated in string 2, then use only the family name contained in string 1.
An exception to the above definition of Full font name is for Windows platform strings for
CFF OFF fonts: in this case, the Full font name string must be identical to the PostScript
FontName in the CFF Name INDEX.

5 Version string. Should begin with the syntax 'Version <number>.<number>' (upper case,
lower case, or mixed, with a space between "Version" and the number).
The string must contain a version number of the following form: one or more digits (0-9)
of value less than 65,535, followed by a period, followed by one or more digits of value
less than 65,535. Any character other than a digit will terminate the minor number. A
character such as ";" is helpful to separate different pieces of version information.
The first such match in the string can be used by installation software to compare font
versions. Some installers may require the string to start with "Version ", followed by a
version number as above.

6 Postscript name for the font; Name ID 6 specifies a string which is used to invoke a
PostScript language font that corresponds to this OFF font. If no name ID 6 is present,
then there is no defined method for invoking this font on a PostScript interpreter.
OFF fonts which include a name with name ID of 6 shall include these two names with
name ID 6, and characteristics as follows:

a. Platform: 1 [Macintosh]; Platform-specific encoding: 0 [Roman]; Language: 0
[English].

b. Platform: 3 [Windows]; Platform-specific encoding: 1 [Unicode]; Language:
0x409 [English (American)].

Names with name ID 6 other than the above two, if present, must be ignored.

When translated to ASCII, these two name strings must be identical; no longer than 63

ISO/IEC FDIS 14496-22:2006(E)

24 © ISO/IEC 2006 — All rights reserved

characters; and restricted to the printable ASCII subset, codes 33 through 126, except
for the 10 characters: '[', ']', '(', ')', '{', '}', '<', '>', '/', '%'.

In CFF OFF fonts, these two name strings, when translated to ASCII, must also be
identical to the font name as stored in the CFF's Name INDEX.

The term "PostScript Name" here means a string identical to the two identical name ID 6
strings described above.

Depending on the particular font format that PostScript language font uses, the
invocation method for the PostScript font differs, and the semantics of the resulting
PostScript language font differ. The method used to invoke this font depends on the
presence of name ID 20.

If a name ID 20 is present in this font, then the default assumption should be that the
PostScript Name defined by name ID 6 should be used with the "composefont"
invocation. This PostScript Name is then the name of a PostScript language CIDFont
resource which corresponds to the glyphs of the OFF font. This name is valid to pass,
with an appropriate PostScript language CMap reference, and an instance name, to the
PostScript language "composefont" operator.

If no name ID 20 is present in this font, then the default assumption should be that the
PostScript Name defined by name ID 6 should be used with the "findfont" invocation, for
locating the font in the context of a PostScript interpreter. This PostScript Name is then
the name of a PostScript language Font resource which corresponds to the glyphs of the
OFF font. This name is valid to pass to the PostScript language "findfont" operator. This
does not necessarily imply that the resulting font dictionary accepts an /Encoding array,
such as when the font referenced is a Type 0 PostScript font.

This specification applies only to data fork OFF fonts. Macintosh resource-fork TrueType
and other Macintosh sfnt-wrapped fonts supply the PostScript font name to be used with
the "findfont" invocation, in order to invoke the font in a PostScript interpreter, in the
FOND resource style-mapping table.

Developers may choose to ignore the default usage when appropriate. For example,
PostScript printers whose version is earlier than 2015 cannot process CID font
resources, and a CJK OFF/CFF-CID font can be downloaded only as a set of Type 1
PostScript fonts. Legacy CJK TrueType fonts, which do not have a name ID 20, may still
be most effectively downloaded as a CID font resource. Definition of the full set of
situations in which the defaults should not be followed is outside the scope of this
document.

7 Trademark; this is used to save any trademark notice/information for this font. Such
information should be based on legal advice. This is distinctly separate from the
copyright.

8 Manufacturer Name.

9 Designer; name of the designer of the typeface.

10 Description; description of the typeface. Can contain revision information, usage
recommendations, history, features, etc.

11 URL Vendor; URL of font vendor (with protocol, e.g., http://, ftp://). If a unique serial
number is embedded in the URL, it can be used to register the font.

12 URL Designer; URL of typeface designer (with protocol, e.g., http://, ftp://).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 25

13 License Description; description of how the font may be legally used, or different
example scenarios for licensed use. This field should be written in plain language, not
legalese.

14 License Info URL; URL where additional licensing information can be found.

15 Reserved; Set to zero.

16 Preferred Family; For historical reasons, font families have contained a maximum of four
styles, but font designers may group more than four fonts to a single family. The
Preferred Family allows font designers to include the preferred family grouping which
contains more than four fonts. This ID is only present if it is different from ID 1.

17 Preferred Subfamily; Allows font designers to include the preferred subfamily grouping
that is more descriptive than ID 2. This ID is only present if it is different from ID 2 and
must be unique for the the Preferred Family.

18 Compatible Full (Macintosh only); On the Macintosh, the menu name is constructed
using the FOND resource. This usually matches the Full Name. If you want the name of
the font to appear differently than the Full Name, you can insert the Compatible Full
Name in ID 18.

19 Sample text; This can be the font name, or any other text that the designer thinks is the
best sample to display the font in.

20 PostScript CID findfont name; Its presence in a font means that the nameID 6 holds a
PostScript font name that is meant to be used with the "composefont" invocation in order
to invoke the font in a PostScript interpreter. See the definition of name ID 6.

The value held in the name ID 20 string is interpreted as a PostScript font name that is
meant to be used with the "findfont" invocation, in order to invoke the font in a PostScript
interpreter.

If the name ID 20 is present in a font, there must be one name ID 20 record for every
Macintosh platform cmap subtable in that font. A particular name ID 20 record is
associated with the encoding specified by the matching cmap subtable. A name ID 20
record is matched to a cmap subtable when they have the same platform and platform-
specific encoding IDs, and corresponding language/version IDs. Name ID 20 records are
meant to be used only with Macintosh cmap subtables. The version field for a cmap
subtable is one more than the language ID value for the corresponding name ID 20
record, with the exception of the cmap subtable version field 0. This version field,
meaning "not language-specific", corresponds to the language ID value 0xFFFF, or
decimal 65535, for the corresponding name ID 20 record.

When translated to ASCII, this name string must be restricted to the printable ASCII
subset, codes 33 through 126, except for the 10 characters: '[', ']', '(', ')', '{', '}', '<', '>', '/',
'%'.

This specification applies only to data fork OFF fonts. Macintosh resource-fork TrueType
and other Macintosh sfnt-wrapped fonts supply the PostScript font name to be used with
the "findfont" invocation, in order to invoke the font in a PostScript interpreter, in the
FOND resource style-mapping table.

A particular Name ID 20 string always corresponds to a particular Macintosh cmap
subtable. However, some host OFF/TTF fonts also contain a post table, format 4, which
provides a mapping from glyph ID to encoding value, and also corresponds to a
particular Macintosh cmap subtable. Unfortunately, the post table format 4 contains no
provision for identifying which Macintosh cmap subtable it matches, nor for providing

ISO/IEC FDIS 14496-22:2006(E)

26 © ISO/IEC 2006 — All rights reserved

more than one mapping. Host fonts which contain a post table format 4, should also
contain only a single Macintosh cmap subtable, and a single Name ID 20 string. In the
case where there is more than one Macintosh cmap subtable and more than one Name
ID 20 string, there is no definition of which one matches the post table format 4.

NOTE All implementations support the same set of name strings but the interpretations may be somewhat different
for the Macintosh and Windows platforms. But since name strings are stored by platform, encoding and language (placing
separate strings for both platforms this should not present a problem.

The key information for this table for MS fonts relates to the use of strings 1, 2 and 4. To better help
understand, some examples of name usage, weight class and style flags have been created.

The following is an example of how name strings would be made for the Arial family.

Font Name ID 1 Name ID 2 Name ID 4 Name ID 16 Name ID 17

Arial Narrow Arial Narrow Regular Arial Narrow Arial Narrow

Arial Narrow Italic Arial Narrow Italic Arial Narrow
Italic Arial Narrow Italic

Arial Narrow Bold Arial Narrow Bold Arial Narrow
Bold Arial Narrow Bold

Arial Narrow Bold
Italic Arial Narrow Bold Italic Arial Narrow

Bold Italic Arial Narrow Bold
Italic

Arial Arial Regular Arial Arial

Arial Italic Arial Italic Arial Italic Arial Italic

Arial Bold Arial Bold Arial Bold Arial Bold

Arial Bold Italic Arial Bold Italic Arial Bold Italic Arial Bold Italic

Arial Black Arial Black Regular Arial Black Arial Black

Arial Black Italic Arial Black Italic Arial Black Italic Arial Black Italic

In addition to name strings, OS/2.usWeightClass, OS/2.usWidthClass, OS/2.fsSelection style bits, and
head.macStyle bits are shown. These settings allow the fonts to fit together into a single family of varying
weight and compression/expansion.

Font
OS/2

usWeight
Class

OS/2
usWidthClass

OS/2
fsSelection

Italic

OS/2
fsSelectio

n Bold

OS/2
fsSelection

Regular

head macStyle
Bold

head
macStyle

Italic

head
macStyle

Condensed

head
macStyle
Extended

Arial
Narrow 400 3 x x

Arial
Narrow

400 3 x x x

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 27

Italic

Arial
Narrow
Bold

700 3 x x x

Arial
Narrow
Bold
Italic

700 3 x x x x x

Arial 400 5 x

Arial
Italic 400 5 x x

Arial
Bold 700 5 x x

Arial
Bold
Italic

700 5 x x x x

Arial
Black 900 5

Arial
Black
Italic

900 5 x x

All 'name' table strings for platform ID 3 (Windows platform) must be in Unicode, using the UTF-16 encoding
form. The character set encding for 'name' table strings with platform ID 0 (Macintosh) is determined by the
encoding ID.

Examples of how these strings might be defined:

0. The copyright string from the font vendor. © Copyright the Monotype Corporation plc, 1990

1. The name the user sees. Times New Roman

2. The name of the style. Bold

3. A unique identifier that applications can store to identify the font being used. Monotype: Times New Roman
Bold: 1990

4. The complete, hopefully unique, human readable name of the font. This name is used by Windows. Times
New Roman Bold
(If this were the Windows platform string for a CFF OFF font, then the value would be TimesNewRoman-Bold,
as described in the definition of name ID 4 above.)

5. Release and version information from the font vendor. Version 1.00 June 1, 1990, initial release

6. The name the font will be known by on a PostScript printer. TimesNewRoman-Bold

7. Trademark string. Times New Roman is a registered trademark of the Monotype Corporation.

ISO/IEC FDIS 14496-22:2006(E)

28 © ISO/IEC 2006 — All rights reserved

8. Manufacturer. Monotype Corporation

9. Designer. Stanley Morison

10. Description. Designed in 1932 for the Times of London newspaper. Excellent readability and a narrow
overall width, allowing more words per line than most fonts.

11. URL of Vendor. http://www.monotypeimaging.com

12. URL of Designer. http://www.monotypeimaging.com

13. License Description. This font may be installed on all of your machines and printers, but you may not sell
or give these fonts to anyone else.

14. License Info URL. http://www.monotype.com/license/

15. Reserved. Set to zero.

16. Preferred Family. No name string present, since it is the same as name ID 1 (Font Family name).

17. Preferred Subfamily. No name string present, since it is the same as name ID 2 (Font Subfamily name).

18. Compatible Full (Macintosh only). No name string present, since it is the same as name ID 4 (Full name).

19. Sample text. The quick brown fox jumps over the lazy dog.

20. PostScript CID findfont name. No name string present. Thus, the PostScript Name defined by name ID 6
should be used with the "findfont" invocation for locating the font in the context of a PostScript interpreter.

The following is an example of only name IDs 6 and 20 in the CFF OFF Japanese font Kozuka Mincho Std
Regular (other name IDs are also present in this font):
6. PostScript name: KozMinStd-Regular. Since a name ID 20 is present in the font (see below), then the
PostScript name defined by name ID 6 should be used with the "composefont" invocation for locating the font
in the context of a PostScript interpreter.
20. PostScript CID findfont name: KozMinStd-Regular-83pv-RKSJ-H, in a name record of Platform 1
[Macintosh], Platform-specific script 1 [Japanese], Language: 0xFFFF [English]. This name string is a
PostScript name that should be used with the "findfont" invocation for locating the font in the context of a
PostScript interpreter, and is associated with the encoding specified by the following cmap subtable, which
must be present in the font: Platform: 1 [Macintosh]; Platform-specific encoding: 1 [Japanese]; Language: 0
[not language-specific].

4.2.7 OS/2 – Global Font Information Table

The OS/2 table consists of a set of metrics that are required in OFF fonts.

Type Name of Entry Comments

USHORT Version 0x0000, 0x0001, 0x0002, 0x0003

SHORT xAvgCharWidth

USHORT usWeightClass

USHORT usWidthClass

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 29

USHORT fsType

SHORT ySubscriptXSize

SHORT ySubscriptYSize

SHORT ySubscriptXOffset

SHORT ySubscriptYOffset

SHORT ySuperscriptXSize

SHORT ySuperscriptYSize

SHORT ySuperscriptXOffset

SHORT ySuperscriptYOffset

SHORT yStrikeoutSize

SHORT yStrikeoutPosition

SHORT sFamilyClass

BYTE Panose[10]

ULONG ulUnicodeRange1 Bits 0-31

ULONG ulUnicodeRange2 Bits 32-63
version 0x0001 and later

ULONG ulUnicodeRange3 Bits 64-95
version 0x0001 and later

ULONG ulUnicodeRange4 Bits 96-127
version 0x0001 and later

CHAR achVendID[4]

USHORT fsSelection

USHORT usFirstCharIndex

USHORT usLastCharIndex

SHORT sTypoAscender

SHORT sTypoDescender

SHORT sTypoLineGap

ISO/IEC FDIS 14496-22:2006(E)

30 © ISO/IEC 2006 — All rights reserved

USHORT usWinAscent

USHORT usWinDescent

ULONG ulCodePageRange1 Bits 0-31
version 0x0001 and later

ULONG ulCodePageRange2 Bits 32-63
version 0x0001 and later

SHORT sxHeight version 0x0002 and later

SHORT sCapHeight version 0x0002 and later

USHORT usDefaultChar version 0x0002 and later

USHORT usBreakChar version 0x0002 and later

USHORT usMaxContext version 0x0002 and later

4.2.7.1 version

Format: 2-byte unsigned short

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and layout for the OS/2 table. The version number for
this layout is three (3). See Annex B.

4.2.7.2 xAvgCharWidth

Format: 2-byte signed short

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average of the escapement (width) of all non-zero width
glyphs in the font.

Comments: The value for xAvgCharWidth is calculated by obtaining the arithmetic average of the width of all non-zero width glyphs in
the font. Furthermore, it is strongly recommended that implementers do not rely on this value for computing layout for lines
of text. Especially, for cases where complex scripts are used. The calculation algorithm differs from one being used in
previous versions of OS/2 table. For details see Annex B.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 31

4.2.7.3 usWeightClass

Format: 2-byte unsigned short

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

4.2.7.4 usWidthClass

Format: 2-byte unsigned short

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as specified by a font designer for the
glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect ratio, each character in a font of normal width has
a relative aspect ratio of one. When a new type style is created of a different width class (either by a font designer or by
some automated means) the relative aspect ratio of the characters in the new font is some percentage greater or less than
those same characters in the normal font -- it is this difference that this parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

ISO/IEC FDIS 14496-22:2006(E)

32 © ISO/IEC 2006 — All rights reserved

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

4.2.7.5 fsType

Format: 2-byte unsigned short

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts may be stored in a document. When a document
with embedded fonts is opened on a system that does not have the font installed (the remote system), the embedded font
may be loaded for temporary (and in some cases, permanent) use on that system by an embedding-aware application.
Embedding licensing rights are granted by the vendor of the font.

The OFF Font Embedding DLL Applications that implement support for font embedding, either through use of the Font
Embedding DLL or through other means, must not embed fonts which are not licensed to permit embedding. Further,
applications loading embedded fonts for temporary use (see Preview & Print and Editable embedding below) must delete
the fonts when the document containing the embedded font is closed.

This version of the OS/2 table makes bits 0 - 3 a set of exclusive bits. In other words, at most one bit in this range
may be set at a time. The purpose is to remove misunderstandings caused by previous behavior of using the
least restrictive of the bits that are set.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus fsType is zero.
Fonts with this setting indicate that they may be embedded and
permanently installed on the remote system by an application. The
user of the remote system acquires the identical rights, obligations and
licenses for that font as the original purchaser of the font, and is
subject to the same end-user license agreement, copyright, design
patent, and/or trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified, embedded or
exchanged in any manner without first obtaining permission of the
legal owner.
Caution: For Restricted License embedding to take effect, it must be
the only level of embedding selected.

2 0x0004 Preview & Print embedding: When this bit is set, the font may be
embedded, and temporarily loaded on the remote system. Documents
containing Preview & Print fonts must be opened "read-only;" no edits

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 33

can be applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may be embedded
but must only be installed temporarily on other systems. In contrast to
Preview & Print fonts, documents containing Editable fonts may be
opened for reading, editing is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be subsetted prior
to embedding. Other embedding restrictions specified in bits 0-3 and 9
also apply.

9 0x0200 Bitmap embedding only: When this bit is set, only bitmaps contained in
the font may be embedded. No outline data may be embedded. If there
are no bitmaps available in the font, then the font is considered
unembeddable and the embedding services will fail. Other embedding
restrictions specified in bits 0-3 and 8 also apply.

10-15 Reserved, must be zero.

4.2.7.6 ySubscriptXSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes should be stressed. This
size field maps to the em square size of the font being used for a subscript. The horizontal font size specifies a font
designer's recommended horizontal font size for subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application can substitute characters by scaling the
character of a font or by substituting characters from another font, this parameter specifies the recommended em square
for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is set to 205, then the horizontal size for a simulated
subscript character would be 1/10th the size of the normal character.

4.2.7.7 ySubscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and other, the numeric sizes should be stressed. This
size field maps to the emHeight of the font being used for a subscript. The horizontal font size specifies a font designer's

ISO/IEC FDIS 14496-22:2006(E)

34 © ISO/IEC 2006 — All rights reserved

recommendation for horizontal font size of subscript characters associated with this font. If a font does not include all of the
required subscript characters for an application, and the application can substitute characters by scaling the characters in
a font or by substituting characters from another font, this parameter specifies the recommended horizontal EmInc for
those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205, then the vertical size for a simulated
subscript character would be 1/10th the size of the normal character.

4.2.7.8 ySubscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript x Offset.

Description: The recommended horizontal Offset in font design untis for subscripts for this font.

Comments: The Subscript X Offset parameter specifies a font designer's recommended horizontal Offset -- from the character origin of
the font to the character origin of the subscript's character -- for subscript characters associated with this font. If a font
does not include all of the required subscript characters for an application, and the application can substitute characters,
this parameter specifies the recommended horizontal position from the character escapement point of the last character
before the first subscript character. For upright characters, this value is usually zero; however, if the characters of a font
have an incline (italic characters) the reference point for subscript characters is usually adjusted to compensate for the
angle of incline.

4.2.7.9 ySubscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript y Offset.

Description: The recommended vertical Offset in font design units from the baseline for subscripts for this font.

Comments: The Subscript Y Offset parameter specifies a font designer's recommended vertical Offset from the character baseline to
the character baseline for subscript characters associated with this font. Values are expressed as a positive Offset below
the character baseline. If a font does not include all of the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those subscript characters.

4.2.7.10 ySuperscriptXSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for this font.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 35

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes should be stressed. This
size field maps to the em square size of the font being used for a subscript. The horizontal font size specifies a font
designer's recommended horizontal font size for superscript characters associated with this font. If a font does not include
all of the required superscript characters for an application, and the application can substitute characters by scaling the
character of a font or by substituting characters from another font, this parameter specifies the recommended em square
for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205, then the horizontal size for a
simulated superscript character would be 1/10th the size of the normal character.

4.2.7.11 ySuperscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric sizes should be stressed. This
size field maps to the emHeight of the font being used for a subscript. The vertical font size specifies a font designer's
recommended vertical font size for superscript characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can substitute characters by scaling the character of
a font or by substituting characters from another font, this parameter specifies the recommended EmHeight for those
superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205, then the vertical size for a simulated
superscript character would be 1/10th the size of the normal character.

4.2.7.12 ySuperscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript x Offset.

Description: The recommended horizontal Offset in font design units for superscripts for this font.

Comments: The Superscript X Offset parameter specifies a font designer's recommended horizontal Offset -- from the character origin
to the superscript character's origin for the superscript characters associated with this font. If a font does not include all of
the required superscript characters for an application, this parameter specifies the recommended horizontal position from
the escapement point of the character before the first superscript character. For upright characters, this value is usually
zero; however, if the characters of a font have an incline (italic characters) the reference point for superscript characters is
usually adjusted to compensate for the angle of incline.

4.2.7.13 ySuperscriptYOffset

Format: 2-byte signed short

Units: Font design units

ISO/IEC FDIS 14496-22:2006(E)

36 © ISO/IEC 2006 — All rights reserved

Title: Superscript y Offset.

Description: The recommended vertical Offset in font design units from the baseline for superscripts for this font.

Comments: The Superscript Y Offset parameter specifies a font designer's recommended vertical Offset -- from the character baseline
to the superscript character's baseline associated with this font. Values for this parameter are expressed as a positive
Offset above the character baseline. If a font does not include all of the required superscript characters for an application,
this parameter specifies the recommended vertical distance above the character baseline for those superscript characters.

4.2.7.14 yStrikeoutSize

Format: 2-byte signed short

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font. If the size is one, the strikeout line will be the
line represented by the strikeout position field. If the value is two, the strikeout line will be the line represented by the
strikeout position and the line immediately above the strikeout position. For a Roman font with a 2048 em square, 102 is
suggested.

4.2.7.15 yStrikeoutPosition

Format: 2-byte signed short

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in font design units.

Comments: Positive values represent distances above the baseline, while negative values represent distances below the baseline. A
value of zero falls directly on the baseline, while a value of one falls one pel above the baseline. The value of strikeout
position should not interfere with the recognition of standard characters, and therefore should not line up with crossbars in
the font. For a Roman font with a 2048 em square, 460 is suggested.

4.2.7.16 sFamilyClass

Format: 2-byte signed short

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values per Annex A. the to each font family. This parameter is intended for
use in selecting an alternate font when the requested font is not available. The font class is the most general and the font
subclass is the most specific. The high byte of this field contains the family class, while the low byte contains the family
subclass.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 37

4.2.7.17 Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin character sets.

Description: This 10 byte series of numbers is used to describe the visual characteristics of a given typeface. If provided, these
characteristics are then used to associate the font with other fonts of similar appearance having different names; the
default values should be set to 'zero'. The variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [12] can be found in bibliography and is maintained by Monotype
Imaging Inc.

Type Name

BYTE bFamilyType;

BYTE bSerifStyle;

BYTE bWeight;

BYTE bProportion;

BYTE bContrast;

BYTE bStrokeVariation;

BYTE bArmStyle;

BYTE bLetterform;

BYTE bMidline;

BYTE bXHeight;

4.2.7.18 ulUnicodeRange

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed by the font file in the 'cmap' subtable for platform
3, encoding ID 1 (Windows platform). If the bit is set (1) then the Unicode range is considered functional. If the bit is clear
(0) then the range is not considered functional. Each of the bits is treated as an independent flag and the bits can be set in
any combination. The determination of "functional" is left up to the font designer, although character set selection should

ISO/IEC FDIS 14496-22:2006(E)

38 © ISO/IEC 2006 — All rights reserved

attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See the Basic Multilingual Plane of ISO/IEC 10646 or
the Unicode Standard for the list of Unicode ranges and characters.

Bit Description

0 Basic Latin

1 Latin-1 Supplement

2 Latin Extended-A

3 Latin Extended-B

4 IPA Extensions

5 Spacing Modifier Letters

6 Combining Diacritical Marks

7 Greek and Coptic

8 Reserved for Unicode SubRanges

9 Cyrillic

 Cyrillic Supplementary

10 Armenian

11 Hebrew

12 Reserved for Unicode SubRanges

13 Arabic

14 Reserved for Unicode SubRanges

15 Devanagari

16 Bengali

17 Gurmukhi

18 Gujarati

19 Oriya

20 Tamil

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 39

21 Telugu

22 Kannada

23 Malayalam

24 Thai

25 Lao

26 Georgian

27 Reserved for Unicode SubRanges

28 Hangul Jamo

29 Latin Extended Additional

30 Greek Extended

31 General Punctuation

32 Superscripts And Subscripts

33 Currency Symbols

34 Combining Diacritical Marks For Symbols

35 Letterlike Symbols

36 Number Forms

37 Arrows

 Supplemental Arrows-A

 Supplemental Arrows-B

38 Mathematical Operators

 Supplemental Mathematical Operators

 Miscellaneous Mathematical Symbols-A

 Miscellaneous Mathematical Symbols-B

39 Miscellaneous Technical

40 Control Pictures

41 Optical Character Recognition

ISO/IEC FDIS 14496-22:2006(E)

40 © ISO/IEC 2006 — All rights reserved

42 Enclosed Alphanumerics

43 Box Drawing

44 Block Elements

45 Geometric Shapes

46 Miscellaneous Symbols

47 Dingbats

48 CJK Symbols And Punctuation

49 Hiragana

50 Katakana

 Katakana Phonetic Extensions

51 Bopomofo

 Bopomofo Extended

52 Hangul Compatibility Jamo

53 Reserved for Unicode SubRanges

54 Enclosed CJK Letters And Months

55 CJK Compatibility

56 Hangul Syllables

57 Non-Plane 0 *

58 Reserved for Unicode SubRanges

59 CJK Unified Ideographs

 CJK Radicals Supplement

 Kangxi Radicals

 Ideographic Description Characters

 CJK Unified Ideograph Extension A

 CJK Unified Ideographs Extension B

 Kanbun

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 41

60 Private Use Area

61 CJK Compatibility Ideographs

 CJK Compatibility Ideographs Supplement

62 Alphabetic Presentation Forms

63 Arabic Presentation Forms-A

64 Combining Half Marks

65 CJK Compatibility Forms

66 Small Form Variants

67 Arabic Presentation Forms-B

68 Halfwidth And Fullwidth Forms

69 Specials

70 Tibetan

71 Syriac

72 Thaana

73 Sinhala

74 Myanmar

75 Ethiopic

76 Cherokee

77 Unified Canadian Aboriginal Syllabics

78 Ogham

79 Runic

80 Khmer

81 Mongolian

82 Braille Patterns

83 Yi Syllables

 Yi Radicals

ISO/IEC FDIS 14496-22:2006(E)

42 © ISO/IEC 2006 — All rights reserved

84 Tagalog

 Hanunoo

 Buhid

 Tagbanwa

85 Old Italic

86 Gothic

87 Deseret

88 Byzantine Musical Symbols

 Musical Symbols

89 Mathematical Alphanumeric Symbols

90 Private Use (plane 15)

 Private Use (plane 16)

91 Variation Selectors

92 Tags

93-127 Reserved for Unicode SubRanges

NOTE * Setting bit 57 implies that there is at least one codepoint beyond the Basic Multilingual Plane that is
supported by this font.

4.2.7.19 achVendID

Format: 4-byte character array

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company responsible for the marketing and distribution of
the typeface that is being classified. It is reasonable to assume that there will be 6 vendors of ITC Zapf Dingbats for use on
desktop platforms in the near future (if not already). It is also likely that the vendors will have other inherent benefits in their
fonts (more kern pairs, unregularized data, hand hinted, etc.). This identifier will allow for the correct vendor's type to be
used over another, possibly inferior, font file. The Vendor ID value is not required. The Vendor ID list can be accessed via
the informative reference 4 in the bibliolgraphy.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 43

4.2.7.20 fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic characters, otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and background reversed.

3 OUTLINED Outline (hollow) characters, otherwise they are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard weight/style for the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5 can be used to determine if the font was
designed with these features or whether some type of machine simulation was performed on the font to achieve this
appearance. Bits 1-4 are rarely used bits that indicate the font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted above, the settings of bits 0 and 1
must be reflected in the macStyle bits in the 'head' table. While bit 6 on implies that bits 0 and 1 of macStyle are clear
(along with bits 0 and 5 of fsSelection), the reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may
be clear and that does not give any indication of whether or not bit 6 of fsSelection is clear (e.g., Arial Light would have all
bits cleared; it is not the regular version of Arial).

4.2.7.21 usFirstCharIndex

Format: 2-byte USHORT

Description: The minimum Unicode index (character code) in this font, according to the cmap subtable for platform ID 3 and platform-
specific encoding ID 0 or 1. For most fonts supporting Win-ANSI or other character sets, this value would be 0x0020. This
field cannot represent supplementary character values (codepoints greater than 0xFFFF). Fonts that support
supplementary characters should set the value in this field to 0xFFFF if the minimum index value is a supplementary
character.

4.2.7.22 usLastCharIndex

Format: 2-byte USHORT

Description: The maximum Unicode index (character code) in this font, according to the cmap subtable for platform ID 3 and encoding
ID 0 or 1. This value depends on which character sets the font supports. This field cannot represent supplementary
character values (codepoints greater than 0xFFFF). Fonts that support supplementary characters should set the value in

ISO/IEC FDIS 14496-22:2006(E)

44 © ISO/IEC 2006 — All rights reserved

this field to 0xFFFF.

4.2.7.23 sTypoAscender

Format: SHORT

Description: The typographic ascender for this font. Remember that this is not the same as the Ascender value in the 'hhea' table, .
One good source for sTypoAscender in Latin based fonts is the Ascender value from an AFM file. For CJK fonts see
below.

The suggested usage for sTypoAscender is that it be used in conjunction with unitsPerEm to compute a typographically
correct default line spacing. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatibility requirements. These new metrics, when combined with the character design widths,
will allow applications to lay out documents in a typographically correct and portable fashion.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing (in addition to horizontal
writing), the required value for sTypoAscender is that which describes the top of the of the ideographic em-box. For
example, if the ideographic em-box of the font extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set
120 design units below the Latin baseline), then the value of sTypoAscender must be set to 880. Failing to adhere to these
requirements will result in incorrect vertical layout.

Also see the Recommendations clause 6 for more on this field.

4.2.7.24 sTypoDescender

Format: SHORT

Description: The typographic descender for this font.. One good source for sTypoDescender in Latin based fonts is the Descender
value from an AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction with unitsPerEm to compute typographically
correct default line spacing. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements. These new metrics, when combined with the character design
widths, will allow applications to lay out documents in a typographically correct and portable fashion.
For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical writing (in addition to horizontal
writing), the required value for sTypoDescender is that which describes the bottom of the of the ideographic em-box. For
example, if the ideographic em-box of the font extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set
120 design units below the Latin baseline), then the value of sTypoDescender must be set to -120. Failing to adhere to
these requirements will result in incorrect vertical layout.

Also see the Recommendations clause 6 for more on this field.

4.2.7.25 sTypoLineGap

Format: 2-byte SHORT

Description: The typographic line gap for this font. Remember that this is not the same as the LineGap value in the 'hhea' table.
The suggested usage for usTypoLineGap is that it be used in conjunction with unitsPerEm to compute a typographically
correct default line spacing. Typical values average 7-10% of units per em. The goal is to free applications from Macintosh
or Windows-specific metrics which are constrained by backward compatability requirements (see clause 6.0,
"Recommendations for OFF Fonts"). These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 45

4.2.7.26 usWinAscent

Format: 2-byte USHORT

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is the same as yMax. Windows will clip the bitmap of
any portion of a glyph that appears above this value. Some applications use this value to determine default line spacing.
This is strongly discouraged. The typographic ascender, descender and line gap fields in conjunction with unitsPerEm
should be used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line spacing using this field, for those applications that
continue to use this field for doing so (against OFF recommendations), then the value should be set appropriately. In such
a case, it may result in some glyph bitmaps being clipped.

4.2.7.27 usWinDescent

Format: 2-byte USHORT

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is the same as -yMin. Windows will clip the bitmap
of any portion of a glyph that appears below this value. Some applications use this value to determine default line spacing.
This is strongly discouraged. The typographic ascender, descender and line gap fields in conjunction with unitsPerEm
should be used for this purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line spacing using this field, for those applications that
continue to use this field for doing so (against OFF recommendations), then the value should be set appropriately. In such
a case, it may result in some glyph bitmaps being clipped.

4.2.7.28 ulCodePageRange

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long (2 copies) totaling 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file in the 'cmap' subtable for platform 3, encoding ID
1 (Windows platform). If the font file is encoding ID 0, then the Symbol Character Set bit should be set. If the bit is set (1)
then the code page is considered functional. If the bit is clear (0) then the code page is not considered functional. Each of
the bits is treated as an independent flag and the bits can be set in any combination. The determination of "functional" is
left up to the font designer, although character set selection should attempt to be functional by code pages if at all
possible.

Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font file contains a 'cmap' subtable for
platform of 3 and encoding ID of 1, then all of the characters in the Unicode range 0xF000 - 0xF0FF (inclusive) will be
used to enumerate the symbol character set. If the bit is not set, any characters present in that range will not be
enumerated as a symbol character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

ISO/IEC FDIS 14496-22:2006(E)

46 © ISO/IEC 2006 — All rights reserved

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8 1258 Vietnamese

9-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-47 Reserved for OEM

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 47

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

4.2.7.29 sxHeight

Format: SHORT

Description: This metric specifies the distance between the baseline and the approximate height of non-ascending lowercase letters
measured in FUnits. This value would normally be specified by a type designer but in situations where that is not possible,
for example when a legacy font is being converted, the value may be set equal to the top of the unscaled and unhinted
glyph bounding box of the glyph encoded at U+0078 (LATIN SMALL LETTER X). If no glyph is encoded in this position the
field should be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value of one font can be scaled to approximate the
apparent size of another.

4.2.7.30 sCapHeight

Format: SHORT

Description: This metric specifies the distance between the baseline and the approximate height of uppercase letters measured in
FUnits. This value would normally be specified by a type designer but in situations where that is not possible, for example
when a legacy font is being converted, the value may be set equal to the top of the unscaled and unhinted glyph bounding
box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER H). If no glyph is encoded in this position the field should
be set to 0.

This metric, if specified, can be used in systems that specify type size by capital height measured in millimeters. It can also
be used as an alignment metric; the top of a drop capital, for instance, can be aligned to the sCapHeight metric of the first
line of text.

4.2.7.31 usDefaultChar

Format: USHORT

Description: Whenever a request is made for a character that is not in the font, Windows provides this default character. If the value of
this field is zero, glyph ID 0 is to be used for the default character otherwise this is the Unicode encoding of the glyph that
Windows uses as the default character. This field cannot represent supplementary character values (codepoints greater
than 0xFFFF).

ISO/IEC FDIS 14496-22:2006(E)

48 © ISO/IEC 2006 — All rights reserved

4.2.7.32 usBreakChar

Format: USHORT

Description: This is the Unicode encoding of the glyph that Windows uses as the break character. The break character is used to
separate words and justify text. Most fonts specify 'space' as the break character. This field cannot represent
supplementary character values (codepoints greater than 0xFFFF).

4.2.7.33 usMaxContext

Format: USHORT

Description: The maximum length of a target glyph context for any feature in this font. For example, a font which has only a pair kerning
feature should set this field to 2. If the font also has a ligature feature in which the glyph sequence 'f f i' is substituted by
the ligature 'ffi', then this field should be set to 3. This field could be useful to sophisticated line-breaking engines in
determining how far they should look ahead to test whether something could change that effects the line breaking. For
chaining contextual lookups, the length of the string (covered glyph) + (input sequence) + (lookahead sequence) should be
considered.

4.2.8 Font Class Parameters - See informative Annex A for details.

4.2.9 post – PostScript

This table contains additional information needed to use TrueType or OFF fonts on PostScript printers. This
includes data for the FontInfo dictionary entry and the PostScript names of all the glyphs. For more
information about PostScript names, see the Adobe document Unicode and Glyph Names in the informative
reference 3 in the bibliography.

Table Versions 1.0, 2.0, and 2.5 refer to TrueType fonts and OFF fonts with TrueType data. OFF fonts with
TrueType data may also use Version 3.0. OFF fonts with CFF data use Version 3.0 only.

The table begins as follows:

Type Name Description

Fixed Version 0x00010000 for version 1.0
0x00020000 for version 2.0
0x00025000 for version 2.5 (deprecated)
0x00030000 for version 3.0

Fixed italicAngle Italic angle in counter-clockwise degrees from the vertical. Zero
for upright text, negative for text that leans to the right (forward).

FWord underlinePosition This is the suggested distance of the top of the underline from
the baseline (negative values indicate below baseline).
The PostScript definition of this FontInfo dictionary key (the y
coordinate of the center of the stroke) is not used for historical
reasons. The value of the PostScript key may be calculated by
subtracting half the underlineThickness from the value of this
field.

FWord underlineThickness Suggested values for the underline thickness.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 49

ULONG isFixedPitch Set to 0 if the font is proportionally spaced, non-zero if the font is
not proportionally spaced (i.e. monospaced).

ULONG minMemType42 Minimum memory usage when an OFF font is downloaded.

ULONG maxMemType42 Maximum memory usage when an OFF font is downloaded.

ULONG minMemType1 Minimum memory usage when an OFF font is downloaded as a
Type 1 font.

ULONG maxMemType1 Maximum memory usage when an OFF font is downloaded as a
Type 1 font.

The last four entries in the table are present because PostScript drivers can do better memory management if
the virtual memory (VM) requirements of a downloadable OFF font are known before the font is downloaded.
This information should be supplied if known. If it is not known, set the value to zero. The driver will still work
but will be less efficient.

Maximum memory usage is minimum memory usage plus maximum runtime memory use. Maximum runtime
memory use depends on the maximum band size of any bitmap potentially rasterized by the font scaler.
Runtime memory usage could be calculated by rendering characters at different point sizes and comparing
memory use.

If the table version is 1.0 or 3.0, the table ends here. The additional entries for versions 2.0 and 2.5 are shown
below. Version 4.0 is reserved to the specification published in the informative reference 5 of the bibliography

4.2.9.1 Version 1.0

This TrueType-based font file contains exactly the 258 glyphs in the standard Macintosh TrueType font file.
See the WGL4.0 Character Set in the informative reference 2 in the bibliography for a list of the Macintosh
glyphs. As a result, the glyph names are taken from the system with no storage required by the font.

4.2.9.2 Version 2.0

This is the version required by TrueType-based fonts to be used on Windows.

Type Name Description

USHORT numberOfGlyphs Number of glyphs (this should be the same as
numGlyphs in 'maxp' table).

USHORT glyphNameIndex[numGlyphs]. This is not an Offset, but is the ordinal number of
the glyph in 'post' string tables.

CHAR names[numberNewGlyphs] Glyph names with length bytes [variable] (a Pascal
string).

This TrueType-based font file contains glyphs not in the standard Macintosh set or the ordering of the glyphs
in the TrueType font file is non-standard (again, for the Macintosh). The glyph name array maps the glyphs in
this font to name index. If the name index is between 0 and 257, treat the name index as a glyph index in the
Macintosh standard order. If the name index is between 258 and 32767, then subtract 258 and use that to
index into the list of Pascal strings at the end of the table. Thus a given font may map some of its glyphs to the
standard glyph names, and some to its own names.

Index numbers 32768 through 65535 are reserved for future use. If you do not want to associate a PostScript
name with a particular glyph, use index number 0 which points the name .notdef.

ISO/IEC FDIS 14496-22:2006(E)

50 © ISO/IEC 2006 — All rights reserved

4.2.9.3 Version 2.5

This version of the 'post' table has been deprecated.

4.2.9.4 Version 3.0

This version is used by OFF fonts with TrueType or CFF data. The version makes it possible to create a
special font that is not burdened with a large 'post' table set of glyph names.

This version specifies that no PostScript name information is provided for the glyphs in this font file. The
printing behavior of this version on PostScript printers is unspecified, except that it should not result in a fatal
or unrecoverable error. Some drivers may print nothing, other drivers may attempt to print using a default
naming scheme.

Windows makes use of the italic angle value in the 'post' table but does not actually require any glyph names
to be stored as Pascal strings.

4.3 TrueType OutlineTables
For OFF fonts based on TrueType outlines, the following tables are used:

TrueType Outlines Tables

Tag Name

cvt Control Value Table

fpgm Font program

glyf Glyph data

loca Index to location

prep CVT Program

4.3.1 cvt – Control Value Table

This table contains a list of values that can be referenced by instructions. They can be used, among other
things, to control characteristics for different glyphs. The length of the table must be an integral number of
FWORD units.

Type Description

FWORD[n] List of n values referenceable by instructions. n is
the number of FWORD items that fit in the size of
the table.

4.3.2 fpgm – Font Program

This table is similar to the CVT Program, except that it is only run once, when the font is first used. It is used
only for FDEFs and IDEFs. Thus the CVT Program need not contain function definitions. However, the CVT
Program may redefine existing FDEFs or IDEFs.

This table is optional.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 51

Type Description

BYTE[n] Instructions. n is the number of BYTE items that fit
in the size of the table.

4.3.3 glyf – Glyf Data

4.3.3.1 Table Structure

This table contains information that describes the glyphs in the font in the TrueType outline format. Information
regarding the rasterizer (scaler) refers to the TrueType rasterizer.

Each glyph begins with the following header:

Type Name Description

SHORT numberOfContours If the number of contours is greater than or equal to zero, this is a single glyph; if negative, this
is a composite glyph.

SHORT xMin Minimum x for coordinate data.

SHORT yMin Minimum y for coordinate data.

SHORT xMax Maximum x for coordinate data.

SHORT yMax Maximum y for coordinate data.

NOTE The bounding rectangle from each character is defined as the rectangle with a lower left corner of (xMin, yMin)
and an upper right corner of (xMax, yMax). The scaler will perform better if the glyph coordinates have been created such
that the xMin is equal to the lsb. For example, if the lsb is 123, then xMin for the glyph should be 123. If the lsb is -12 then
the xMin should be -12. If the lsb is 0 then xMin is 0. If all glyphs are done like this, set bit 1 of flags field in the 'head' table.

4.3.3.1.1 Simple Glyph Description

This is the table information needed if numberOfContours is greater than zero, that is, a glyph is not a
composite.

Type Name Description

USHORT endPtsOfContours[n] Array of last points of each contour; n is the number of contours.

USHORT instructionLength Total number of bytes for instructions.

BYTE instructions[n] Array of instructions for each glyph; n is the number of instructions.
See TrueType Instruction Set as listed in normative reference 4 in clause
2.

BYTE flags[n] Array of flags for each coordinate in outline; n is the number of flags.

ISO/IEC FDIS 14496-22:2006(E)

52 © ISO/IEC 2006 — All rights reserved

BYTE or SHORT xCoordinates[] First coordinates relative to (0,0); others are relative to previous point.

BYTE or SHORT yCoordinates[] First coordinates relative to (0,0); others are relative to previous point.

NOTE In the glyf table, the position of a point is not stored in absolute terms but as a vector relative to the previous
point. The delta-x and delta-y vectors represent these (often small) changes in position.

Each flag is a single byte. Their meanings are shown below.

Flags Bit Description

On Curve 0 If set, the point is on the curve; otherwise, it is off the curve.

x-Short Vector 1 If set, the corresponding x-coordinate is 1 byte long. If not set, 2 bytes.

y-Short Vector 2 If set, the corresponding y-coordinate is 1 byte long. If not set, 2 bytes.

Repeat 3 If set, the next byte specifies the number of additional times this set of flags is to be repeated.
In this way, the number of flags listed can be smaller than the number of points in a character.

This x is same
(Positive x-Short Vector)

4 This flag has two meanings, depending on how the x-Short Vector flag is set. If x-Short Vector
is set, this bit describes the sign of the value, with 1 equalling positive and 0 negative. If the x-
Short Vector bit is not set and this bit is set, then the current x-coordinate is the same as the
previous x-coordinate. If the x-Short Vector bit is not set and this bit is also not set, the current
x-coordinate is a signed 16-bit delta vector.

This y is same
(Positive y-Short Vector)

5 This flag has two meanings, depending on how the y-Short Vector flag is set. If y-Short Vector
is set, this bit describes the sign of the value, with 1 equalling positive and 0 negative. If the y-
Short Vector bit is not set and this bit is set, then the current y-coordinate is the same as the
previous y-coordinate. If the y-Short Vector bit is not set and this bit is also not set, the current
y-coordinate is a signed 16-bit delta vector.

Reserved 6 This bit is reserved. Set it to zero.

Reserved 7 This bit is reserved. Set it to zero.

4.3.3.1.2 Composite Glyph Description

This is the table information needed for composite glyphs (numberOfContours is -1). A composite glyph starts
with two USHORT values ("flags" and "glyphIndex," i.e. the index of the first contour in this composite glyph);
the data then varies according to "flags").

Type Name Description

SHORT Flags component flag

SHORT glyphIndex glyph index of component

VARIABLE Argument1 x-Offset for component or point number; type depends on bits 0 and 1 in component
flags

VARIABLE Argument2 y-Offset for component or point number; type depends on bits 0 and 1 in component

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 53

flags

Transformation Option

The C pseudo-code fragment below shows how the composite glyph information is stored and parsed;
definitions for "flags" bits follow this fragment:

do {
 USHORT flags;
 USHORT glyphIndex;
 if (flags & ARG_1_AND_2_ARE_WORDS) {
 (SHORT or FWord) argument1;
 (SHORT or FWord) argument2;
 } else {
 USHORT arg1and2; /* (arg1 << 8) | arg2 */
 }
 if (flags & WE_HAVE_A_SCALE) {
 F2Dot14 scale; /* Format 2.14 */
 } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) {
 F2Dot14 xscale; /* Format 2.14 */
 F2Dot14 yscale; /* Format 2.14 */
 } else if (flags & WE_HAVE_A_TWO_BY_TWO) {
 F2Dot14 xscale; /* Format 2.14 */
 F2Dot14 scale01; /* Format 2.14 */
 F2Dot14 scale10; /* Format 2.14 */
 F2Dot14 yscale; /* Format 2.14 */
 }
} while (flags & MORE_COMPONENTS)
if (flags & WE_HAVE_INSTR){
 USHORT numInstr
 BYTE instr[numInstr]

NOTE The TrueType instruction set is available via normative reference 4 in clause 2.

Argument1 and argument2 can be either x and y offsets to be added to the glyph or two point numbers. In the
latter case, the first point number indicates the point that is to be matched to the new glyph. The second
number indicates the new glyph's "matched" point. Once a glyph is added, its point numbers begin directly
after the last glyphs (endpoint of first glyph + 1).

When arguments 1 and 2 are an x and a y Offset instead of points and the bit ROUND_XY_TO_GRID is set to
1, the values are rounded to those of the closest grid lines before they are added to the glyph. X and Y Offsets
are described in FUnits.

If the bit WE_HAVE_A_SCALE is set, the scale value is read in 2.14 format-the value can be between -2 to
almost +2. The glyph will be scaled by this value before grid-fitting.

The bit WE_HAVE_A_TWO_BY_TWO allows for an interrelationship between the x and y coordinates. This
could be used for 90-degree rotations, for example.

These are the constants for the flags field:

Flags Bit Description

ARG_1_AND_2_ARE_WORDS 0 If this is set, the arguments are words; otherwise, they are bytes.

ARGS_ARE_XY_VALUES 1 If this is set, the arguments are xy values; otherwise, they are points.

ROUND_XY_TO_GRID 2 For the xy values if the preceding is true.

ISO/IEC FDIS 14496-22:2006(E)

54 © ISO/IEC 2006 — All rights reserved

WE_HAVE_A_SCALE 3 This indicates that there is a simple scale for the component. Otherwise, scale = 1.0.

RESERVED 4 This bit is reserved. Set it to 0.

MORE_COMPONENTS 5 Indicates at least one more glyph after this one.

WE_HAVE_AN_X_AND_Y_SCALE 6 The x direction will use a different scale from the y direction.

WE_HAVE_A_TWO_BY_TWO 7 There is a 2 by 2 transformation that will be used to scale the component.

WE_HAVE_INSTRUCTIONS 8 Following the last component are instructions for the composite character.

USE_MY_METRICS 9 If set, this forces the aw and lsb (and rsb) for the composite to be equal to those from this
original glyph. This works for hinted and unhinted characters.

OVERLAP_COMPOUND 10 Reserved

SCALED_COMPONENT_OFFSET 11 Reserved

UNSCALED_COMPONENT_OFFSET 12 Composite designed not to have the component Offset scaled.

The purpose of USE_MY_METRICS is to force the lsb and rsb to take on a desired value. For example, an i-
circumflex (U+00EF) is often composed of the circumflex and a dotless-i. In order to force the composite to
have the same metrics as the dotless-i, set USE_MY_METRICS for the dotless-i component of the composite.
Without this bit, the rsb and lsb would be calculated from the hmtx entry for the composite (or would need to
be explicitly set with TrueType instructions).
NOTE The behavior of the USE_MY_METRICS operation is undefined for rotated composite components.

4.3.4 loca – Index to Location

The loca table stores the Offsets to the locations of the glyphs in the font, relative to the beginning of the glyf
table. In order to compute the length of the last glyph element, there is an extra entry after the last valid index.

By definition, index zero points to the "missing character," which is the character that appears if a character is
not found in the font. The missing character is commonly represented by a blank box or a space. If the font
does not contain an outline for the missing character, then the first and second Offsets should have the same
value. This also applies to any other character without an outline, such as the space character.

Most routines will look at the 'maxp' table to determine the number of glyphs in the font, but the value in the
'loca' table should agree.

There are two versions of this table, the short and the long. The version is specified in the indexToLocFormat
entry in the 'head' table.

Short version

Type Name Description

USHORT Offsets[n] The actual local Offset divided by 2 is stored. The value of n is numGlyphs + 1.
The value for numGlyphs is found in the 'maxp' table.

Long version

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 55

Type Name Description

ULONG Offsets[n] The actual local Offset is stored. The value of n is numGlyphs + 1. The value for
numGlyphs is found in the 'maxp' table.

NOTE The local Offsets should be long-aligned, i.e., multiples of 4. Offsets which are not long-aligned may seriously
degrade performance of some processors.

4.3.5 prep – Control Value Program

The Control Value Program consists of a set of TrueType instructions that will be executed whenever the font
or point size or transformation matrix change and before each glyph is interpreted. Any instruction is legal in
the CVT Program but since no glyph is associated with it, instructions intended to move points within a
particular glyph outline cannot be used in the CVT Program. The name 'prep' is anachronistic.

Type Description

BYTE[n] Set of instructions executed whenever point size or font or transformation change. n is the
number of BYTE items that fit in the size of the table.

4.4 PostScript Outline Tables
For OFF fonts based on PostScript outlines, the following tables are used:

Tag Name

CFF

PostScript font program
(compact font format)

VORG Vertical Origin

4.4.1 CFF – PostScript font program (Compact Font Format) Table

This table contains a compact representation of a PostScript Type 1, or CIDFont and is structured according
to Adobe Technical Note #5176: "The Compact Font Format Specification which is available via normative
reference 7 in clause 2," and Adobe Technical Note #5177: "Type 2 Charstring Format which is available
normative reference 6 in clause 2."

Existing TrueType fonts use a glyph index to specify and access glyphs within a font, e.g. to index the loca
table and thereby access glyph data in the glyf table. This concept is retained in OFF PostScript fonts except
that glyph data is accessed through the CharStrings INDEX of the CFF table.

4.4.2 VORG – Vertical Origin Table

This table specifies the y coordinate of the vertical origin of every glyph in the font.

This table may be optionally present only in CFF OFF fonts. If present in TrueType OFF fonts it must be
ignored by font clients, just as any other unrecognized table would be. This is because this table is not needed
for TrueType OFF fonts: the Vertical Metrics ('vmtx') and Glyph Data ('glyf') tables in TrueType OFF fonts

ISO/IEC FDIS 14496-22:2006(E)

56 © ISO/IEC 2006 — All rights reserved

provide all the information necessary to accurately calculate the y-coordinate of a glyph's vertical origin. See
the "Vertical Origin and Advance Height" in the 'vmtx' table specification for more details.

The 'vmtx' and Vertical Header ('vhea') tables continue to be required for all OFF fonts that support vertical
writing. Advance heights must continue to be obtained from the 'vmtx' table; that is the only place they are
stored.

If a 'VORG' table is present in a CFF OFF font, a font client may choose to obtain the y coordinate of a glyph's
vertical origin either:

1. directly from the 'VORG', or:

2. by first calculating the top of the glyph's bounding box from the CFF charstring data and then adding
to it the glyph's top side bearing from the 'vmtx' table.

The former method offers the advantage of increased accuracy and efficiency, since bounding box results
calculated from the CFF charstring as in the latter method can differ depending on the rounding decisions and
data types of the bounding box algorithm. The latter method provides compatibility for font clients who are
either unaware of or choose not to support the 'VORG'.

Thus, the 'VORG' doesn't add any new font metric values per se; it simply improves accuracy and efficiency
for CFF OFF font clients, since the intermediate step of calculating bounding boxes from the CFF charstring is
rendered unnecessary.

See clause 6 "OFF CJK Font Guidelines" for more information about constructing CJK (Chinese, Japanese,
and Korean) fonts.

Vertical Origin Table Format

Type Name Description

USHORT majorVersion Major version (starting at 1). Set to 1.

USHORT minorVersion Minor version (starting at 0). Set to 0.

SHORT defaultVertOriginY The y coordinate of a glyph's vertical origin, in the font's design
coordinate system, to be used if no entry is present for the glyph in
the vertOriginYMetrics array.

USHORT numVertOriginYMetrics Number of elements in the vertOriginYMetrics array.

This is immediately followed by the vertOriginYMetrics array (if numVertOriginYMetrics is non-zero), which
has numVertOriginYMetrics elements of the following format:

Type Name Description

USHORT glyphIndex Glyph index.

SHORT vertOriginY Y coordinate, in the font's design coordinate system, of the vertical
origin of glyph with index glyphIndex.

This array must be sorted by increasing glyphIndex, and must not have more than one element with the same
glyphIndex. In a size-optimized implementation, glyphs whose vertical origin's y coordinate equals
defaultVertOriginY will not have an entry in this array.

If all glyphs in a font share the same defaultVertOriginY value, the length of the 'VORG' table will be 8 bytes in
a size-optimized implementation, since the vertOriginYMetrics array will be absent.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 57

Typically only the full-width Latin glyphs in an East Asian font will have entries in the vertOriginYMetrics array.
Glyphs rotated for vertical writing, as used in the Vertical Alternates and Rotation ('vrt2') feature, for example,
can take advantage of the default value if they are designed appropriately.

In the following example of a complete 'VORG' table for a 1000-unit-em font, every glyph in the font is
specified as having a vertOriginY of 880 except for glyphs with glyph indexes 10, 12, and 13:
majorVersion =1
minorVersion =0
defaultVertOriginY =880
numVertOriginYMetrics=3
--- vertOriginYMetrics[index]=(glyphIndex,vertOriginY)
[0]=(10,889)
[1]=(12,861)
[2]=(13,849)

4.5 Bitmap Glyph Tables
OFF fonts may also contain bitmaps of glyphs, in addition to outlines. Hand-tuned bitmaps are especially
useful in OFF fonts for representing complex glyphs at very small sizes. If a bitmap for a particular size is
provided in a font, it will be used by the system instead of the outline when rendering the glyph.
NOTE ATM does not currently support hinted bitmaps in OFF fonts.)

Tag Name

EBDT Embedded bitmap data

EBLC Embedded bitmap location data

EBSC Embedded bitmap scaling data

4.5.1 EBDT – Embedded Bitmap Data Table

4.5.1.1 Table Structure

Three tables are used to embed bitmaps in OFFfonts. They are the 'EBLC' table for embedded bitmap
locators, the 'EBDT' table for embedded bitmap data, and the 'EBSC' table for embedded bitmap scaling
information.

OFF embedded bitmaps are also called 'sbits' (for "scaler bitmaps"). A set of bitmaps for a face at a given size
is called a strike.

The 'EBLC' table identifies the sizes and glyph ranges of the sbits, and keeps Offsets to glyph bitmap data in
indexSubTables. The 'EBDT' table then stores the glyph bitmap data, in a number of different possible formats.
Glyph metrics information may be stored in either the 'EBLC' or 'EBDT' table, depending upon the
indexSubTable and glyph bitmap data formats. The 'EBSC' table identifies sizes that will be handled by
scaling up or scaling down other sbit sizes.

The 'EBDT' table begins with a header containing simply the table version number.

Type Name Description

FIXED version Initially defined as 0x00020000

ISO/IEC FDIS 14496-22:2006(E)

58 © ISO/IEC 2006 — All rights reserved

The rest of the 'EBDT' table is a collection of bitmap data. The data can be in a number of possible formats,
indicated by information in the 'EBLC' table. Some of the formats contain metric information plus image data,
and other formats contain only the image data. Long word alignment is not required for these sub tables; byte
alignment is sufficient.

There are also two different formats for glyph metrics: big glyph metrics and small glyph metrics. Big glyph
metrics define metrics information for both horizontal and vertical layouts. This is important in fonts (such as
Kanji) where both types of layout may be used. Small glyph metrics define metrics information for one layout
direction only. Which direction applies, horizontal or vertical, is determined by the 'flags' field in the
bitmapSizeTable field of the 'EBLC' table.

bigGlyphMetrics
Type Name

BYTE height

BYTE width

CHAR horiBearingX

CHAR horiBearingY

BYTE horiAdvance

CHAR vertBearingX

CHAR vertBearingY

BYTE vertAdvance

smallGlyphMetrics

Type Name

BYTE height

BYTE width

CHAR BearingX

CHAR BearingY

BYTE Advance

4.5.1.2 Glyph bitmap data formats

The nine different formats currently defined for glyph bitmap data are listed and described below. Different
formats are better for different purposes.

In all formats, if the bitDepth is greater than 1, all of a pixel's bits are stored consecutively in memory, and all
of a row's pixels are stored consecutively.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 59

NOTE Each of these formats can contain black/white or grayscale bitmaps depending on the setting of the bitDepth
field in the 'EBLC' table. For performance reasons, we recommend using a byte-aligned format for embedded bitmaps with
bitDepth of 8.

4.5.1.2.1 Format 1: small metrics, byte-aligned data

Type Name Description

smallGlyphMetrics smallMetrics Metrics information for the glyph

VARIABLE image data Byte-aligned bitmap data

Glyph bitmap format 1 consists of small metrics records (either horizontal or vertical depending on the
bitmapSizeTable 'flag' value in the 'EBLC' table) followed by byte aligned bitmap data. The bitmap data begins
with the most significant bit of the first byte corresponding to the top-left pixel of the bounding box, proceeding
through succeeding bits moving left to right. The data for each row is padded to a byte boundary, so the next
row begins with the most significant bit of a new byte. 1 bits correspond to black, and 0 bits to white.

4.5.1.2.2 Format 2: small metrics, bit-aligned data

Type Name Description

smallGlyphMetrics small Metrics Metrics information for the glyph

VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 2 is the same as format 1 except that the bitmap data is bit aligned. This means that the
data for a new row will begin with the bit immediately following the last bit of the previous row. The start of
each glyph must be byte aligned, so the last row of a glyph may require padding. This format takes a little
more time to parse, but saves file space compared to format 1.

4.5.1.2.3 Format 3: (obsolete)

4.5.1.2.4 Format 4: metrics in EBLC, compressed data

NOTE Glyph bitmap format 4 is a compressed format used by Macintosh platform in some of the East Asian fonts.

4.5.1.2.5 Format 5: metrics in EBLC, bit-aligned image data only

Type Name Description

VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 5 is similar to format 2 except that no metrics information is included, just the bit aligned
data. This format is for use with 'EBLC' indexSubTable format 2 or format 5, which will contain the metrics
information for all glyphs. It works well for Kanji fonts.

The rasterizer recalculates sbit metrics for Format 5 bitmap data, allowing Windows to report correct ABC
widths, even if the bitmaps have white space on either side of the bitmap image. This allows fonts to store
monospaced bitmap glyphs in the efficient Format 5 without breaking Windows GetABCWidths call.

4.5.1.2.6 Format 6: big metrics, byte-aligned data

Type Name Description

ISO/IEC FDIS 14496-22:2006(E)

60 © ISO/IEC 2006 — All rights reserved

bigGlyphMetrics bigMetrics Metrics information for the glyph

VARIABLE image data Byte-aligned bitmap data

Glyph bitmap format 6 is the same as format 1 except that is uses big glyph metrics instead of small.

4.5.1.2.7 Format7: big metrics, bit-aligned data

Type Name Description

bigGlyphMetrics bigMetrics Metrics information for the glyph

VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 7 is the same as format 2 except that is uses big glyph metrics instead of small.

4.5.1.2.8 ebdtComponent; array used by Formats 8 and 9

Type Name Description

USHORT glyphCode Component glyph code

CHAR xOffset Position of component left

CHAR yOffset Position of component top

The component array, used by Formats 8 and 9, contains the glyph code of the component, which can be
looked up in the 'EBLC' table, as well as xOffset and yOffset values which tell where to position the top-left
corner of the component in the composite. Nested composites (a composite of composites) are allowed, and
the number of nesting levels is determined by implementation stack space.

4.5.1.2.9 Format 8: small metrics, component data

Type Name Description

smallGlyphMetrics smallMetrics Metrics information for the glyph

BYTE pad Pad to short boundary

USHORT numComponents Number of components

ebdtComponent componentArray[n] Glyph code, Offset array

4.5.1.2.10 Format 9: big metrics, component data

Type Name Description

bigGlyphMetrics bigMetrics Metrics information for the glyph

USHORT numComponents Number of components

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 61

ebdtComponent componentArray[n] Glyph code, Offset array

Glyph bitmap formats 8 and 9 are used for composite bitmaps. For accented characters and other composite
glyphs it may be more efficient to store a copy of each component separately, and then use a composite
description to construct the finished glyph. The composite formats allow for any number of components, and
allow the components to be positioned anywhere in the finished glyph. Format 8 uses small metrics, and
format 9 uses big metrics.

4.5.2 EBLC – Embedded Bitmap Location Table

4.5.2.1 Table Structure & Data Types

Three tables are used to embed bitmaps in OFFfonts. They are the 'EBLC' table for embedded bitmap
locators, the 'EBDT' table for embedded bitmap data, and the 'EBSC' table for embedded bitmap scaling
information. OFF embedded bitmaps are called 'sbits' (for "scaler bitmaps"). A set of bitmaps for a face at a
given size is called a strike.

The 'EBLC' table identifies the sizes and glyph ranges of the sbits, and keeps Offsets to glyph bitmap data in
indexSubTables. The 'EBDT' table then stores the glyph bitmap data, also in a number of different possible
formats. Glyph metrics information may be stored in either the 'EBLC' or 'EBDT' table, depending upon the
indexSubTable and glyph bitmap formats. The 'EBSC' table identifies sizes that will be handled by scaling up
or scaling down other sbit sizes.

The 'EBLC' table begins with a header containing the table version and number of strikes. An OFF font may
have one or more strikes embedded in the 'EBDT' table.

eblcHeader

Type Name Description

FIXED version initially defined as 0x00020000

ULONG numSizes Number of bitmapSizeTables

The eblcHeader is followed immediately by the bitmapSizeTable array(s). The numSizes in the eblcHeader
indicates the number of bitmapSizeTables in the array. Each strike is defined by one bitmapSizeTable.

bitmapSizeTable

Type Name Description

ULONG indexSubTableArrayOffset Offset to index subtable from beginning of EBLC.

ULONG indexTablesSize number of bytes in corresponding index subtables and array

ULONG numberOfIndexSubTables an index subtable for each range or format change

ULONG colorRef not used; set to 0.

sbitLineMetrics Hori line metrics for text rendered horizontally

sbitLineMetrics Vert line metrics for text rendered vertically

ISO/IEC FDIS 14496-22:2006(E)

62 © ISO/IEC 2006 — All rights reserved

USHORT startGlyphIndex lowest glyph index for this size

USHORT endGlyphIndex highest glyph index for this size

BYTE ppemX horizontal pixels per Em

BYTE ppemY vertical pixels per Em

BYTE bitDepth the Windows rasterizer supports the following bitDepth values, as described
below: 1, 2, 4, and 8.

CHAR Flags vertical or horizontal (see bitmapFlags)

The indexSubTableArrayOffset is the offset from the beginning of the 'EBLC' table to the indexSubTableArray.
Each strike has one of these arrays to support various formats and discontiguous ranges of bitmaps. The
indexTablesSize is the total number of bytes in the indexSubTableArray and the associated indexSubTables.
The numberOfIndexSubTables is a count of the indexSubTables for this strike.

4.5.2.2 Description of Table Entries

The horizontal and vertical line metrics contain the ascender, descender, linegap, and advance information for
the strike. The line metrics format is described in the following table:

sbitLineMetrics

Type Name

CHAR Ascender

CHAR Descender

BYTE widthMax

CHAR caretSlopeNumerator

CHAR caretSlopeDenominator

CHAR caretOffset

CHAR minOriginSB

CHAR minAdvanceSB

CHAR maxBeforeBL

CHAR minAfterBL

CHAR Pad1

CHAR Pad2

The caret slope determines the angle at which the caret is drawn, and the Offset is the number of pixels (+ or -
) to move the caret. This is a signed char since we are dealing with integer metrics. The minOriginSB,

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 63

minAdvanceSB , maxBeforeBL, and minAfterBL are described in the diagrams below. The main need for
these numbers is for scalers that may need to pre-allocate memory and/or need more metric information to
position glyphs. All of the line metrics are one byte in length. The line metrics are not used directly by the
rasterizer, but are available to clients who want to parse the 'EBLC' table.

The startGlyphIndex and endGlyphIndex describe the minimum and maximum glyph codes in the strike, but a
strike does not necessarily contain bitmaps for all glyph codes in this range. The indexSubTables determine
which glyphs are actually present in the 'EBDT' table.

The ppemX and ppemY fields describe the size of the strike in pixels per Em. The ppem measurement is
equivalent to point size on a 72 dots per inch device. Typically, ppemX will be equal to ppemY for devices with
'square pixels'. To accommodate devices with rectangular pixels, and to allow for bitmaps with other aspect
ratios, ppemX and ppemY may differ.

The bitDepth field is used to specify the number of levels of gray used in the embedded bitmaps. The
Windows rasterizer v.1.7 or greater support the following values.

bitDepth

Value Description

1 Black/white

2 4 levels of gray

4 16 levels of gray

8 256 levels of gray

The 'flags' byte contains two bits to indicate the direction of small glyph metrics: horizontal or vertical. The
remaining bits are reserved.

Bitmap Flags

Type Name Description

CHAR 0x01 Horizontal

CHAR 0x02 Vertical

The colorRef and bitDepth fields are reserved for future enhancements. For monochrome bitmaps they should
have the values colorRef=0 and bitDepth=1.

ISO/IEC FDIS 14496-22:2006(E)

64 © ISO/IEC 2006 — All rights reserved

Figure 1 – Horizontal Text

Figure 2 – Vertical Text

Associated with the image data for every glyph in a strike is a set of glyph metrics. These glyph metrics
describe bounding box height and width, as well as side bearing and advance width information. The glyph
metrics can be found in one of two places. For ranges of glyphs (not necessarily the whole strike) whose
metrics may be different for each glyph, the glyph metrics are stored along with the glyph image data in the
'EBDT' table. Details of how this is done is described in 'EBDT'. For ranges of glyphs whose metrics are
identical for every glyph, we save significant space by storing a single copy of the glyph metrics in the
indexSubTable in the 'EBLC'.

There are also two different formats for glyph metrics: big glyph metrics and small glyph metrics. Big glyph
metrics define metrics information for both horizontal and vertical layouts. This is important in fonts (such as
Kanji) where both types of layout may be used. Small glyph metrics define metrics information for one layout
direction only. Which direction applies, horizontal or vertical, is determined by the 'flags' field in the
bitmapSizeTable.

bigGlyphMetrics

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 65

Type Name

BYTE Height

BYTE Width

CHAR horiBearingX

CHAR horiBearingY

BYTE horiAdvance

CHAR vertBearingX

CHAR vertBearingY

BYTE vertAdvance

smallGlyphMetrics

Type Name

BYTE Height

BYTE Width

CHAR BearingX

CHAR BearingY

BYTE Advance

The following diagram illustrates the meaning of the glyph metrics.

Figure 3 – Glyph Metrics

ISO/IEC FDIS 14496-22:2006(E)

66 © ISO/IEC 2006 — All rights reserved

The bitmapSizeTable for each strike contains the Offset to an array of indexSubTableArray elements. Each
element describes a glyph code range and an Offset to the indexSubTable for that range. This allows a strike
to contain multiple glyph code ranges and to be represented in multiple index formats if desirable.

indexSubTableArray

Type Name Description

USHORT firstGlyphIndex first glyph code of this range

USHORT lastGlyphIndex last glyph code of this range
(inclusive)

ULONG additionalOffset
ToIndexSubtable

add to indexSubTableArrayOffset to
get Offset from beginning of 'EBLC'

After determining the strike, the rasterizer searches this array for the range containing the given glyph code.
When the range is found, the additionalOffsetToIndexSubtable is added to the indexSubTableArrayOffset to
get the Offset of the indexSubTable in the 'EBLC'.

The first indexSubTableArray is located after the last bitmapSizeSubTable entry. Then the indexSubTables for
the strike follow. Another indexSubTableArray (if more than one strike) and its indexSubTables are next. The
'EBLC' continues with an array and indexSubTables for each strike.

We now have the Offset to the indexSubTable. All indexSubTable formats begin with an indexSubHeader
which identifies the indexSubTable format, the format of the 'EBDT' image data, and the Offset from the
beginning of the 'EBDT' table to the beginning of the image data for this range.

indexSubHeader

Type Name Description

USHORT indexFormat format of this indexSubTable

USHORT imageFormat format of 'EBDT' image data

ULONG imageDataOffset Offset to image data in 'EBDT' table

There are currently five different formats used for the indexSubTable, depending upon the size and type of
bitmap data in the glyph code range.

The choice of which indexSubTable format to use is up to the font manufacturer, but should be made with the
aim of minimizing the size of the font file. Ranges of glyphs with variable metrics - that is, where glyphs may
differ from each other in bounding box height, width, side bearings or advance - must use format 1, 3 or 4.
Ranges of glyphs with constant metrics can save space by using format 2 or 5, which keep a single copy of
the metrics information in the indexSubTable rather than a copy per glyph in the 'EBDT' table. In some
monospaced fonts it makes sense to store extra white space around some of the glyphs to keep all metrics
identical, thus permitting the use of format 2 or 5.

Structures for each indexSubTable format are listed below.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 67

indexSubTable1: variable metrics glyphs with 4 byte Offsets

Type Name Description

indexSubHeader header header info

ULONG OffsetArray[] OffsetArray[glyphIndex]+
imageDataOffset=glyphData
sizeOfArray=
(lastGlyph-firstGlyph+1)+1+1
pad if needed

indexSubTable2: all glyphs have identical metrics

Type Name Description

indexSubHeader header header info

ULONG imageSize all the glyphs are of the same size

bigGlyphMetrics bigMetrics all glyphs have the same metrics; glyph data may be compressed,
byte-aligned, or bit-aligned

indexSubTable3: variable metrics glyphs with 2 byte Offsets

Type Name Description

indexSubHeader header header info

USHORT OffsetArray[] OffsetArray[glyphIndex]
+imageDataOffset= glyphData
sizeOfArray=
(lastGlyph-firstGlyph+1)+1+1 pad if needed

indexSubTable4: variable metrics glyphs with sparse glyph codes

Type Name Description

indexSubHeader header header info

ULONG numGlyphs array length

codeOffsetPair glyphArray[] one per glyph; sizeOfArray=numGlyphs+1

codeOffsetPair:
used by indexSubTable4
Type Name Description

USHORT glyphCode code of glyph present

ISO/IEC FDIS 14496-22:2006(E)

68 © ISO/IEC 2006 — All rights reserved

USHORT Offset location in EBDT

indexSubTable5: constant metrics glyphs with sparse glyph codes

Type Name Description

indexSubHeader header header info

ULONG imageSize all glyphs have the same data size

bigGlyphMetrics bigMetrics all glyphs have the same metrics

ULONG numGlyphs array length

USHORT glyphCodeArray[] one per glyph, sorted by glyph code; sizeOfArray=numGlyphs

The size of the 'EBDT' image data can be calculated from the indexSubTable information. For the constant
metrics formats (2 and 5) the image data size is constant, and is given in the imageSize field. For the variable
metrics formats (1, 3, and 4) image data must be stored contiguously and in glyph code order, so the image
data size may be calculated by subtracting the Offset for the current glyph from the Offset of the next glyph.
Because of this, it is necessary to store one extra element in the OffsetArray pointing just past the end of the
range's image data. This will allow the correct calculation of the image data size for the last glyph in the range.

Contiguous, or nearly contiguous, ranges of glyph codes are handled best by formats 1, 2, and 3 which store
an Offset for every glyph code in the range. Very sparse ranges of glyph codes should use format 4 or 5 which
explicitly call out the glyph codes represented in the range. A small number of missing glyphs can be
efficiently represented in formats 1 or 3 by having the Offset for the missing glyph be followed by the same
Offset for the next glyph, thus indicating a data size of zero.

The only difference between formats 1 and 3 is the size of the OffsetArray elements: format 1 uses ULONG's
while format 3 uses USHORT's. Therefore format 1 can cover a greater range (> 64k bytes) while format 3
saves more space in the 'EBLC' table. Since the OffsetArray elements are added to the imageDataOffset base
address in the indexSubHeader, a very large set of glyph bitmap data could be addressed by splitting it into
multiple ranges, each less than 64k bytes in size, allowing the use of the more efficient format 3.

The 'EBLC' table specification requires double word (ULONG) alignment for all subtables. This occurs
naturally for indexSubTable formats 1, 2, and 4, but may not for formats 3 and 5, since they include arrays of
type USHORT. When there are an odd number of elements in these arrays it is necessary to add an extra
padding element to maintain proper alignment.

4.5.2.3 EBSC – Embedded Bitmap Scaling Table

The 'EBSC' table provides a mechanism for describing embedded bitmaps which are created by scaling other
embedded bitmaps. While this is the sort of thing that outline font technologies were invented to avoid, there
are cases (small sizes of Kanji, for example) where scaling a bitmap produces a more legible font than scan-
converting an outline. For this reason the 'EBSC' table allows a font to define a bitmap strike as a scaled
version of another strike.

The 'EBSC' table begins with a header containing the table version and number of strikes.

ebscHeader

Type Name Description

FIXED version initially defined as 0x00020000

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 69

ULONG numSizes

The ebscHeader is followed immediately by the bitmapScaleTable array. The numSizes in the ebscHeader
indicates the number of bitmapScaleTables in the array. Each strike is defined by one bitmapScaleTable.

bitmapScaleTable

Type Name Description

sbitLineMetrics Hori line metrics

sbitLineMetrics vert line metrics

BYTE ppemX target horizontal pixels per Em

BYTE ppemY target vertical pixels per Em

BYTE substitutePpemX use bitmaps of this size

BYTE substitutePpemY use bitmaps of this size

The line metrics have the same meaning as those in the bitmapSizeTable, and refer to font wide metrics after
scaling. The ppemX and ppemY values describe the size of the font after scaling. The substitutePpemX and
substitutePpemY values describe the size of a strike that exists as an sbit in the 'EBLC' and 'EBDT', and that
will be scaled up or down to generate the new strike.

Notice that scaling in the x direction is independent of scaling in the y direction, and their scaling values may
differ. A square aspect-ratio strike could be scaled to a non-square aspect ratio. Glyph metrics are scaled by
the same factor as the pixels per Em (in the appropriate direction), and are rounded to the nearest integer
pixel.

4.6 Optional Tables
Tag Name

DSIG Digital signature

gasp Grid-fitting/Scan-conversion

hdmx Horizontal device metrics

kern Kerning

LTSH Linear threshold data

PCLT PCL 5 data

VDMX Vertical device metrics

vhea Vertical Metrics header

vmtx Vertical Metrics

ISO/IEC FDIS 14496-22:2006(E)

70 © ISO/IEC 2006 — All rights reserved

4.6.1 DSIG – Digital Signature Table

The DSIG table contains the digital signature of the OFFfont. Signature formats are widely documented and
rely on a key pair architecture. Software developers, or publishers posting material on the Internet, create
signatures using a private key. Operating systems or applications authenticate the signature using a public
key.

The W3C and major software and operating system developers have specified security standards that
describe signature formats, specify secure collections of web objects, and recommend authentication
architecture. OFF fonts with signatures will support these standards.

OFF fonts offer many security features:

• Operating systems and browsing applications can identify the source and integrity of font files before
using them,

• Font developers can specify embedding restrictions in OFF fonts, and these restrictions cannot be
altered in a font signed by the developer.

The enforcement of signatures is an administrative policy, enabled by the operating system. Windows will
soon require installed software components, including fonts, to be signed. Internet browsers will also give
users and administrators the ability to screen out unsigned objects obtained on-line, including web pages,
fonts, graphics, and software components.

Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign or
GTE's Cybertrust, free or at a very low cost.

The DSIG table is organized as follows. The first portion of the table is the header:

DSIG Header

Type Name Description

ULONG ulVersion Version number of the DSIG table (0x00000001)

USHORT usNumSigs Number of signatures in the table

USHORT usFlag permission flags
Bit 0: cannot be resigned
Bits 1-7: Reserved (Set to 0)

The version of the DSIG table is expressed as a ULONG, beginning at 0. The version of the DSIG table
currently used is version 1 (0x00000001).

Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font (counter-
signatures). If this bit is set to zero (0) the font may have a signature applied over the existing digital
signature(s). A party who wants to ensure that their signature is the last signature can set this bit.

The DSIG header information is followed by entries for each of the signatures in the table specifying format
and Offset information:

Format/Offset Table

Type Name Description

ULONG ulFormat format of the signature

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 71

ULONG ulLength Length of signature in bytes

ULONG ulOffset Offset to the signature block from the beginning of the table

This information is then followed by one or more signature blocks:

Signature Block

Type Name Description

USHORT usReserved1 Reserved for later use; 0 for now

USHORT usReserved2 Reserved for later use; 0 for now

ULONG cbSignature Length (in bytes) of the PKCS#7 packet in pbSignature

BYTE [] bSignature PKCS#7 packet

The format identifier specifies both the format of the signature object, as well as the hashing algorithm used to
create and authenticate the signature. Currently only one format is defined. Format 1 supports PKCS#7
signatures with X.509 certificates and counter-signatures, as these signatures have been standardized for use
by the W3C with the participation of numerous software developers.

For more information about PKCS#7 signatures see [10]

For more information about counter-signatures, see [11]

Format 1: For whole fonts, with either TrueType outlines and/or CFF data

PKCS#7 or PKCS#9. The signed content digest is created as follows:

1. If there is an existing DSIG table in the font,

1. Remove DSIG table from font.

2. Remove DSIG table entry from sfnt Table Directory.

3. Adjust table Offsets as necessary.

4. Zero out the file checksum in the head table.

5. Add the usFlag (reserved, set at 1 for now) to the stream of bytes

2. Hash the full stream of bytes using a secure one-way hash (such as MD5) to create the content digest.

3. Create the PKCS#7 signature block using the content digest.

4. Create a new DSIG table containing the signature block.

5. Add the DSIG table to the font, adjusting table Offsets as necessary.

6. Add a DSIG table entry to the sfnt Table Directory.

7. Recalculate the checksum in the head table.

Prior to signing a font file, ensure that all the following attributes are true.

• The magic number in the head table is correct.

ISO/IEC FDIS 14496-22:2006(E)

72 © ISO/IEC 2006 — All rights reserved

• Given the number of tables value in the Offset table, the other values in the Offset table are consistent.

• The tags of the tables are ordered alphabetically and there are no duplicate tags.

• The Offset of each table is a multiple of 4. (That is, tables are long word aligned.)

• The first actual table in the file comes immediately after the directory of tables.

• If the tables are sorted by Offset, then for all tables i (where index 0 means the the table with the
smallest Offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other
words, the tables do not overlap, and there are at most 3 bytes of padding between tables.

• The pad bytes between tables are all zeros.

• The Offset of the last table in the file plus its length is not greater than the size of the file.

• The checksums of all tables are correct.

• The head table's checkSumAdjustment field is correct.
Signatures for TrueType Collections

The DSIG table for a TrueType Collection (TTC) must be the last table in the TTC file. The Offset and
checksum to the table is put in the TTCHeader (version 2). Signatures of TTC files are expected to be Format
1 signatures.

The signature of a TTC file applies to the entire file, not to the individual fonts contained within the TTC.
Signing the TTC file ensures that other contents are not added to the TTC.

Individual fonts included in a TrueType collection should not be individually signed as the process of making
the TTC could invalidate the signature on the font.

4.6.2 gasp – Grid-fitting and Scan Conversion Procedure

This table contains information which describes the preferred rasterization techniques for the typeface when it
is rendered on grayscale-capable devices. This table also has some use for monochrome devices, which may
use the table to turn off hinting at very large or small sizes, to improve performance.

At very small sizes, the best appearance on grayscale devices can usually be achieved by rendering the
glyphs in grayscale without using hints. At intermediate sizes, hinting and monochrome rendering will usually
produce the best appearance. At large sizes, the combination of hinting and grayscale rendering will typically
produce the best appearance.

If the 'gasp' table is not present in a typeface, the rasterizer may apply default rules to decide how to render
the glyphs on grayscale devices.

The 'gasp' table consists of a header followed by groupings of 'gasp' records:

gasp Table

Type Name Description

USHORT version Version number (set to 0)

USHORT numRanges Number of records to follow

GASPRANGE gaspRange[numRanges] Sorted by ppem

Each GASPRANGE record looks like this:

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 73

Type Name Description

USHORT rangeMaxPPEM Upper limit of range, in PPEM

USHORT rangeGaspBehavior Flags describing desired rasterizer behavior.

There are two flags for the rangeGaspBehavior flags:

Flag Meaning

GASP_GRIDFIT Use gridfitting

GASP_DOGRAY Use grayscale rendering

The set of bit flags may be extended in the future.The four currently defined values of rangeGaspBehavior
would have the following uses:

Flag Value Meaning

GASP_DOGRAY 0x0002 small sizes, typically ppem<9

GASP_GRIDFIT 0x0001 medium sizes, typically 9<=ppem<=16

GASP_DOGRAY|GASP_GRIDFIT 0x0003 large sizes, typically ppem>16

(neither) 0x0000 optional for very large sizes, typically ppem>2048

The records in the gaspRange[] array must be sorted in order of increasing rangeMaxPPEM value. The last
record should use 0xFFFF as a sentinel value for rangeMaxPPEM and should describe the behavior desired
at all sizes larger than the previous record's upper limit. If the only entry in 'gasp' is the 0xFFFF sentinel value,
the behavior described will be used for all sizes.

Sample 'gasp' table

Flag Value Meaning

version 0x0000

numRanges 0x0003

Range[0], Flag 0x0008 0x0002 ppem<=8, grayscale only

Range[1], Flag 0x0010 0x0001 9<=ppem<=16, gridfit only

Range[2], Flag 0xFFFF 0x0003 16<ppem, gridfit and grayscale

4.6.3 hdmx – Horizontal Device Metrics

The hdmx table relates to OFFfonts with TrueType outlines. The Horizontal Device Metrics table stores integer
advance widths scaled to particular pixel sizes. This allows the font manager to build integer width tables
without calling the scaler for each glyph. Typically this table contains only selected screen sizes. This table is
sorted by pixel size. The checksum for this table applies to both subtables listed.

ISO/IEC FDIS 14496-22:2006(E)

74 © ISO/IEC 2006 — All rights reserved

NOTE For non-square pixel grids, the character width (in pixels) will be used to determine which device record to use.
For example, a 12 point character on a device with a resolution of 72x96 would be 12 pixels high and 16 pixels wide. The
hdmx device record for 16 pixel characters would be used.

If bit 4 of the flag field in the 'head' table is not set, then it is assumed that the font scales linearly; in this case
an 'hdmx' table is not necessary and should not be built. If bit 4 of the flag field is set, then one or more glyphs
in the font are assumed to scale nonlinearly. In this case, performance can be improved by including the
'hdmx' table with one or more important DeviceRecord's for important sizes. Please see clause 6
"Recommendations for OFF Fonts" for more detail.

The table begins as follows:

hdmx Header

Type Name Description

USHORT version Table version number (0)

SHORT numRecords Number of device records.

LONG sizeDeviceRecord Size of a device record, long aligned.

DeviceRecord records[numRecords] Array of device records.

Each DeviceRecord for format 0 looks like this.

Device Record

Type Name Description

BYTE pixelSize Pixel size for following widths (as ppem).

BYTE maxWidth Maximum width.

BYTE widths[numGlyphs] Array of widths (numGlyphs is from the 'maxp' table).

Each DeviceRecord is padded with 0's to make it long word aligned.

Each Width value is the width of the particular glyph, in pixels, at the pixels per em (ppem) size listed at the
start of the DeviceRecord.

The ppem sizes are measured along the y axis.

4.6.4 Kerning

The kerning table contains the values that control the intercharacter spacing for the glyphs in a font. There is
currently no system level support for kerning (other than returning the kern pairs and kern values). OFFfonts
containing CFF outlines are not supported by the 'kern' table and must use the 'GPOS' OFF Layout table.

Each subtable varies in format, and can contain information for vertical or horizontal text, and can contain
kerning values or minimum values. Kerning values are used to adjust inter-character spacing, and minimum
values are used to limit the amount of adjustment that the scaler applies by the combination of kerning and
tracking. Because the adjustments are additive, the order of the subtables containing kerning values is not
important. However, tables containing minimum values should usually be placed last, so that they can be used
to limit the total effect of other subtables.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 75

The kerning table in the OFF font file has a header, which contains the format number and the number of
subtables present, and the subtables themselves.

Type Field Description

USHORT version Table version number (starts at 0)

USHORT nTables Number of subtables in the kerning table.

Kerning subtables will share the same header format. This header is used to identify the format of the
subtable and the kind of information it contains:

Type Field Description

USHORT version Kern subtable version number

USHORT length Length of the subtable, in bytes (including this header).

USHORT coverage What type of information is contained in this table.

The coverage field is divided into the following sub-fields, with sizes given in bits:

Sub-field Bits #'s Size Description

horizontal 0 1 1 if table has horizontal data, 0 if vertical.

minimum 1 1 If this bit is set to 1, the table has minimum values. If set to 0, the table
has kerning values.

cross-stream 2 1 If set to 1, kerning is perpendicular to the flow of the text.

If the text is normally written horizontally, kerning will be done in the up
and down directions. If kerning values are positive, the text will be
kerned upwards; if they are negative, the text will be kerned
downwards.

If the text is normally written vertically, kerning will be done in the left
and right directions. If kerning values are positive, the text will be
kerned to the right; if they are negative, the text will be kerned to the
left.

The value 0x8000 in the kerning data resets the cross-stream kerning
back to 0.

override 3 1 If this bit is set to 1 the value in this table should replace the value
currently being accumulated.

reserved1 4-7 4 Reserved. This should be set to zero.

format 8-15 8 Format of the subtable. Only formats 0 and 2 have been defined.
Formats 1 and 3 through 255 are reserved for future use.

Format 0

This is the only format that will be properly interpreted by Windows and OS/2.

ISO/IEC FDIS 14496-22:2006(E)

76 © ISO/IEC 2006 — All rights reserved

This subtable is a sorted list of kerning pairs and values. The list is preceded by information which makes it
possible to make an efficient binary search of the list:

Type Field Description

USHORT nPairs This gives the number of kerning pairs in the table.

USHORT searchRange The largest power of two less than or equal to the value of nPairs,
multiplied by the size in bytes of an entry in the table.

USHORT entrySelector This is calculated as log2 of the largest power of two less than or equal
to the value of nPairs. This value indicates how many iterations of the
search loop will have to be made. (For example, in a list of eight items,
there would have to be three iterations of the loop).

USHORT rangeShift The value of nPairs minus the largest power of two less than or equal
to nPairs, and then multiplied by the size in bytes of an entry in the
table.

This is followed by the list of kerning pairs and values. Each has the following format:

Type Field Description

USHORT left The glyph index for the left-hand glyph in the kerning pair.

USHORT right The glyph index for the right-hand glyph in the kerning pair.

FWORD value The kerning value for the above pair, in FUnits. If this value is greater
than zero, the characters will be moved apart. If this value is less than
zero, the character will be moved closer together.

The left and right halves of the kerning pair make an unsigned 32-bit number, which is then used to order the
kerning pairs numerically.

A binary search is most efficiently coded if the search range is a power of two. The search range can be
reduced by half by shifting instead of dividing. In general, the number of kerning pairs, nPairs, will not be a
power of two. The value of the search range, searchRange, should be the largest power of two less than or
equal to nPairs. The number of pairs not covered by searchRange (that is, nPairs - searchRange) is the value
rangeShift.

Format 2

This subtable is a two-dimensional array of kerning values. The glyphs are mapped to classes, using a
different mapping for left- and right-hand glyphs. This allows glyphs that have similar right- or left-side shapes
to be handled together. Each similar right- or left-hand shape is said to be single class.

Each row in the kerning array represents one left-hand glyph class, each column represents one right-hand
glyph class, and each cell contains a kerning value. Row and column 0 always represent glyphs that do not
kern and contain all zeros.

The values in the right class table are stored pre-multiplied by the number of bytes in a single kerning value,
and the values in the left class table are stored pre-multiplied by the number of bytes in one row. This
eliminates needing to multiply the row and column values together to determine the location of the kerning
value. The array can be indexed by doing the right- and left-hand class mappings, adding the class values to
the address of the array, and fetching the kerning value to which the new address points.

The header for the simple array has the following format:

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 77

Type Field Description

USHORT rowWidth The width, in bytes, of a row in the table.

USHORT leftClassTable Offset from beginning of this subtable to left-hand class table.

USHORT rightClassTable Offset from beginning of this subtable to right-hand class table.

USHORT array Offset from beginning of this subtable to the start of the kerning array.

Each class table has the following header:

Type Field Description

USHORT firstGlyph First glyph in class range.

USHORT nGlyphs Number of glyph in class range.

This header is followed by nGlyphs number of class values, which are in USHORT format. Entries for glyphs
that don't participate in kerning should point to the row or column at position zero.

The array itself is a left by right array of kerning values, which are FWords, where left is the number of left-
hand classes and R is the number of right-hand classes. The array is stored by row.
NOTE This format is the quickest to process since each lookup requires only a few index operations. The table can
be quite large since it will contain the number of cells equal to the product of the number of right-hand classes and the
number of left-hand classes, even though many of these classes do not kern with each other.

4.6.5 LTSH – Linear Threshold

The LTSH table relates to OFFfonts containing TrueType outlines. There are noticeable improvements to
fonts on the screen when instructions are carefully applied to the sidebearings. The gain in readability is Offset
by the necessity for the OS to grid fit the glyphs in order to find the actual advance width for the glyphs (since
instructions may be moving the sidebearing points). The TrueType outline format already has two
mechanisms to side step the speed issues: the 'hdmx' table, where precomputed advance widths may be
saved for selected ppem sizes, and the 'vdmx' table, where precomputed vertical advance widths may be
saved for selected ppem sizes. The 'LTSH' table (Linear ThreSHold) is a second, complementary method.

The LTSH table defines the point at which it is reasonable to assume linearly scaled advance widths on a
glyph-by-glyph basis. This table should not be included unless bit 4 of the "flags" field in the 'head' table is set.
The criteria for linear scaling is:

a. (ppem size is � 50) AND (difference between the rounded linear width and the rounded instructed width �
2% of the rounded linear width)

or b. Linear width == Instructed width

The LTSH table records the ppem for each glyph at which the scaling becomes linear again, despite
instructions effecting the advance width. It is a requirement that, at and above the recorded threshold size, the
glyph remain linear in its scaling (i.e., not legal to set threshold at 55 ppem if glyph becomes nonlinear again
at 90 ppem). The format for the table is:

Type Name Description

USHORT version Version number (starts at 0).

ISO/IEC FDIS 14496-22:2006(E)

78 © ISO/IEC 2006 — All rights reserved

USHORT numGlyphs Number of glyphs (from "numGlyphs" in 'maxp' table).

BYTE yPels[numGlyphs] The vertical pel height at which the glyph can be assumed to scale
linearly. On a per glyph basis.

NOTE Glyphs which do not have instructions on their sidebearings should have yPels = 1; i.e., always scales linearly.

4.6.6 PCLT – PCL 5 Table

The 'PCLT' table is strongly discouraged for OFFfonts with TrueType outlines. Extra information on many of
these fields can be found in the HP PCL 5 Printer Language Technical Reference Manual available from
Hewlett-Packard Boise Printer Division.

The format for the table is:

Type Name of Entry

FIXED Version

ULONG FontNumber

USHORT Pitch

USHORT xHeight

USHORT Style

USHORT TypeFamily

USHORT CapHeight

USHORT SymbolSet

CHAR Typeface[16]

CHAR CharacterComplement[8]

CHAR FileName[6]

CHAR StrokeWeight

CHAR WidthType

BYTE SerifStyle

BYTE Reserved (pad)

Version

Table version number 1.0 is represented as 0x00010000.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 79

FontNumber

This 32-bit number is segmented in two parts. The most significant bit indicates native versus converted
format. Only font vendors should create fonts with this bit zeroed. The 7 next most significant bits are
assigned by Hewlett-Packard Boise Printer Division to major font vendors. The least significant 24 bits are
assigned by the vendor. Font vendors should attempt to insure that each of their fonts are marked with unique
values.

Code Vendor

A Adobe Systems

B Bitstream Inc.

C Agfa Corporation

H Bigelow & Holmes

L Linotype Company

M Monotype Typography Ltd.

Pitch

The width of the space in FUnits (FUnits are described by the unitsPerEm field of the 'head' table).
Monospace fonts derive the width of all characters from this field.

xHeight

The height of the optical line describing the height of the lowercase x in FUnits. This might not be the same as
the measured height of the lowercase x.

Style

The most significant 6 bits are reserved. The 5 next most significant bits encode structure. The next 3 most
significant bits encode appearance width. The 2 least significant bits encode posture.

Structure (bits 5-9)

0 Solid (normal, black)

1 Outline (hollow)

2 Inline (incised, engraved)

3 Contour, edged (antique, distressed)

4 Solid with shadow

5 Outline with shadow

ISO/IEC FDIS 14496-22:2006(E)

80 © ISO/IEC 2006 — All rights reserved

6 Inline with shadow

7 Contour, or edged, with shadow

8 Pattern filled

9 Pattern filled #1 (when more than one pattern)

10 Pattern filled #2 (when more than two patterns)

11 Pattern filled #3 (when more than three patterns)

12 Pattern filled with shadow

13 Pattern filled with shadow #1 (when more than one pattern or shadow)

14 Pattern filled with shadow #2 (when more than two patterns or shadows)

15 Pattern filled with shadow #3 (when more than three patterns or shadows)

16 Inverse

17 Inverse with border

18-31 reserved

Width (bits 2-4)

0 normal

1 condensed

2 compressed, extra condensed

3 extra compressed

4 ultra compressed

5 reserved

6 expanded, extended

7 extra expanded, extra extended

Posture (bits 0-1)

0 upright

1 oblique, italic

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 81

2 alternate italic (backslanted, cursive, swash)

3 reserved

TypeFamily

The 4 most significant bits are font vendor codes. The 12 least significant bits are typeface family codes. Both
are assigned by HP Boise Division.

Vendor Codes (bits 12-15)

0 reserved

1 Agfa Corporation

2 Bitstream Inc.

3 Linotype Company

4 Monotype Typography Ltd.

5 Adobe Systems

6 font repackagers

7 vendors of unique typefaces

8-15 reserved

CapHeight

The height of the optical line describing the top of the uppercase H in FUnits. This might not be the same as
the measured height of the uppercase H.

SymbolSet

The most significant 11 bits are the value of the symbol set "number" field. The value of the least significant 5
bits, when added to 64, is the ASCII value of the symbol set "ID" field. Symbol set values are assigned by HP
Boise Division. Unbound fonts, or "typefaces" should have a symbol set value of 0. See the PCL 5 Printer
Language Technical Reference Manual or the PCL 5 Comparison Guide for the most recent published list of
codes.

Examples

 PCL decimal

 Windows 3.1 "ANSI" 19U 629

 Windows 3.0 "ANSI" 9U 309

ISO/IEC FDIS 14496-22:2006(E)

82 © ISO/IEC 2006 — All rights reserved

 Adobe "Symbol" 19M 621

 Macintosh 12J 394

 PostScript ISO Latin 1 11J 362

 PostScript Std. Encoding 10J 330

 Code Page 1004 9J 298

 DeskTop 7J 234

TypeFace

This 16-byte ASCII string appears in the "font print" of PCL printers. Care should be taken to insure that the
base string for all typefaces of a family are consistent, and that the designators for bold, italic, etc. are
standardized.

Example

 Times New

 Times New Bd

 Times New It

 Times New BdIt

 Courier New

 Courier New Bd

 Courier New It

 Courier New BdIt

CharacterComplement

This 8-byte field identifies the symbol collections provided by the font, each bit identifies a symbol collection
and is independently interpreted. Symbol set bound fonts should have this field set to all F's (except bit 0).

Example

 DOS/PCL Complement 0xFFFFFFFF003FFFFE

 Windows 3.1 "ANSI" 0xFFFFFFFF37FFFFFE

 Macintosh 0xFFFFFFFF36FFFFFE

 ISO 8859-1 Latin 1 0xFFFFFFFF3BFFFFFE

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 83

 ISO 8859-1,2,9 Latin 1,2,5 0xFFFFFFFF0BFFFFFE

The character collections identified by each bit are as follows:

 31 ASCII (supports several standard interpretations)

 30 Latin 1 extensions

 29 Latin 2 extensions

 28 Latin 5 extensions

 27 Desktop Publishing Extensions

 26 Accent Extensions (East and West Europe)

 25 PCL Extensions

 24 Macintosh Extensions

 23 PostScript Extensions

 22 Code Page Extensions

The character complement field also indicates the index mechanism used with an unbound font. Bit 0 must
always be cleared when the font elements are provided in Unicode order.

FileName

This 6-byte field is composed of 3 parts. The first 3 bytes are an industry standard typeface family string. The
fourth byte is a treatment character, such as R, B, I. The last two characters are either zeroes for an unbound
font or a two character mnemonic for a symbol set if symbol set found.

Examples

 TNRR00 Times New (text weight, upright)

 TNRI00 Times New Italic

 TNRB00 Times New Bold

 TNRJ00 Times New Bold Italic

 COUR00 Courier

 COUI00 Courier Italic

 COUB00 Courier Bold

 COUJ00 Courier Bold Italic

Treatment Flags

ISO/IEC FDIS 14496-22:2006(E)

84 © ISO/IEC 2006 — All rights reserved

 R Text, normal, book, etc.

 I Italic, oblique, slanted, etc.

 B Bold

 J Bold Italic, Bold Oblique

 D Demibold

 E Demibold Italic, Demibold Oblique

 K Black

 G Black Italic, Black Oblique

 L Light

 P Light Italic, Light Oblique

 C Condensed

 A Condensed Italic, Condensed Oblique

 F Bold Condensed

 H Bold Condensed Italic, Bold Condensed Oblique

 S Semibold (lighter than demibold)

 T Semibold Italic, Semibold Oblique

other treatment flags are assigned over time.

StrokeWeight

This signed 1-byte field contains the PCL stroke weight value. Only values in the range -7 to 7 are valid:

 -7 Ultra Thin

 -6 Extra Thin

 -5 Thin

 -4 Extra Light

 -3 Light

 -2 Demilight

 -1 Semilight

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 85

 0 Book, text, regular, etc.

 1 Semibold (Medium, when darker than Book)

 2 Demibold

 3 Bold

 4 Extra Bold

 5 Black

 6 Extra Black

 7 Ultra Black, or Ultra

Type designers often use interesting names for weights or combinations of weights and styles, such as Heavy,
Compact, Inserat, Bold No. 2, etc. PCL stroke weights are assigned on the basis of the entire family and use
of the faces. Typically, display faces don't have a "text" weight assignment.

WidthType

This signed 1-byte field contains the PCL appearance width value. The values are not directly related to those
in the appearance with field of the style word above. Only values in the range -5 to 5 are valid.

 -5 Ultra Compressed

 -4 Extra Compressed

 -3 Compressed, or Extra Condensed

 -2 Condensed

 0 Normal

 2 Expanded

 3 Extra Expanded

SerifStyle

This signed 1-byte field contains the PCL serif style value. The most significant 2 bits of this byte specify the
serif/sans or contrast/monoline characterisitics of the typeface.

Bottom 6 bit values:

 0 Sans Serif Square

 1 Sans Serif Round

 2 Serif Line

ISO/IEC FDIS 14496-22:2006(E)

86 © ISO/IEC 2006 — All rights reserved

 3 Serif Triangle

 4 Serif Swath

 5 Serif Block

 6 Serif Bracket

 7 Rounded Bracket

 8 Flair Serif, Modified Sans

 9 Script Nonconnecting

 10 Script Joining

 11 Script Calligraphic

 12 Script Broken Letter

Top 2 bit values:

 0 reserved

 1 Sans Serif/Monoline

 2 Serif/Contrasting

 3 reserved

Reserved

Should be set to zero.

4.6.7 VDMX – Vertical Device Metrics

The VDMX table relates to OFFfonts with TrueType outlines. Under Windows, the usWinAscent and
usWinDescent values from the 'OS/2' table will be used to determine the maximum black height for a font at
any given size. Windows calls this distance the Font Height. Because TrueType instructions can lead to Font
Heights that differ from the actual scaled and rounded values, basing the Font Height strictly on the yMax and
yMin can result in "lost pixels." Windows will clip any pixels that extend above the yMax or below the yMin. In
order to avoid grid fitting the entire font to determine the correct height, the VDMX table has been defined.

The VDMX table consists of a header followed by groupings of VDMX records:

VDMX Header

Type Name Description

USHORT version Version number (0 or 1).

USHORT numRecs Number of VDMX groups present

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 87

USHORT numRatios Number of aspect ratio groupings

Ratio ratRange[numRatios] Ratio ranges (see below for more info)

USHORT Offset[numRatios] Offset from start of this table to the VDMX group for this ratio range.

Vdmx groups The actual VDMX groupings (documented below)

Ratio Record

Type Name Description

BYTE bCharSet Character set (see below).

BYTE xRatio Value to use for x-Ratio

BYTE yStartRatio Starting y-Ratio value.

BYTE yEndRatio Ending y-Ratio value.

Ratios are set up as follows:

For a 1:1 aspect ratio Ratios.xRatio = 1;
Ratios.yStartRatio = 1;
Ratios.yEndRatio = 1;

For 1:1 through 2:1 ratio Ratios.xRatio = 2;
Ratios.yStartRatio = 1;
Ratios.yEndRatio = 2;

For 1.33:1 ratio Ratios.xRatio = 4;
Ratios.yStartRatio = 3;
Ratios.yEndRatio = 3;

For all aspect ratios Ratio.xRatio = 0;
Ratio.yStartRatio = 0;
Ratio.yEndRatio = 0;

All values set to zero signal the default grouping to use; if present, this must be the last Ratio group in the
table. Ratios of 2:2 are the same as 1:1.

Aspect ratios are matched against the target device by normalizing the entire ratio range record based on the
current X resolution and performing a range check of Y resolutions for each record after normalization. Once a
match is found, the search stops. If the 0,0,0 group is encountered during the search, it is used (therefore if
this group is not at the end of the ratio groupings, no group that follows it will be used). If there is not a match
and there is no 0,0,0 record, then there is no VDMX data for that aspect ratio.
NOTE Range checks are conceptually performed as follows:

(deviceXRatio == Ratio.xRatio) && (deviceYRatio >= Ratio.yStartRatio) && (deviceYRatio <=
Ratio.yEndRatio)

Each ratio grouping refers to a specific VDMX record group; there must be at least 1 VDMX group in the table.

ISO/IEC FDIS 14496-22:2006(E)

88 © ISO/IEC 2006 — All rights reserved

The bCharSet value is used to denote cases where the VDMX group was computed based on a subset of the
glyphs present in the font file. The semantics of bCharSet is different based on the version of the VDMX table.
It is recommended that VDMX version 1 be used. The currently defined values for character set are:

Character Set Values - Version 0

Value Description

0 No subset; the VDMX group applies to all glyphs in the font. This is used for symbol or dingbat
fonts.

1 Windows ANSI subset; the VDMX group was computed using only the glyphs required to
complete the Windows ANSI character set. Windows will ignore any VDMX entries that are not
for the ANSI subset (i.e. ANSI_CHARSET)

Character Set Values - Version 1

Value Description

0 No subset; the VDMX group applies to all glyphs in the font. If adding new character sets to
existing font, add this flag and the groups necessary to support it. This should only be used in
conjunction with ANSI_CHARSET.

1 No subset; the VDMX group applies to all glyphs in the font. Used when creating a new font
for Windows. No need to support SYMBOL_CHARSET.

VDMX groups immediately follow the table header. Each set of records (there need only be one set) has the
following layout:

VDMX Group

Type Name Description

USHORT recs Number of height records in this group

BYTE startsz Starting yPelHeight

BYTE endsz Ending yPelHeight

vTable entry[recs] The VDMX records

vTable Record

Type Name Description

USHORT yPelHeight yPelHeight to which values apply.

SHORT yMax Maximum value (in pels) for this yPelHeight.

SHORT yMin Minimum value (in pels) for this yPelHeight.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 89

This table must appear in sorted order (sorted by yPelHeight), but need not be continous. It should have an
entry for every pel height where the yMax and yMin do not scale linearly, where linearly scaled heights are
defined as:

Hinted yMax and yMin are identical to scaled/rounded yMax and yMin

It is assumed that once yPelHeight reaches 255, all heights will be linear, or at least close enough to linear
that it no longer matters. Please note that while the Ratios structure can only support ppem sizes up to 255,
the vTable structure can support much larger pel heights (up to 65535). The choice of SHORT and USHORT
for vTable is dictated by the requirement that yMax and yMin be signed values (and 127 to -128 is too small a
range) and the desire to word-align the vTable elements.

4.6.8 vhea – Vertical Header Table

The vertical header table (tag name: 'vhea') contains information needed for vertical fonts. The glyphs of
vertical fonts are written either top to bottom or bottom to top. This table contains information that is general to
the font as a whole. Information that pertains to specific glyphs is given in the vertical metrics table (tag name:
'vmtx') described separately. The formats of these tables are similar to those for horizontal metrics (hhea and
hmtx).

Data in the vertical header table must be consistent with data that appears in the vertical metrics table. The
advance height and top sidebearing values in the vertical metrics table must correspond with the maximum
advance height and minimum bottom sidebearing values in the vertical header table.

See the clause 6 "OFF CJK Font Guidelines" for more information about constructing CJK (Chinese,
Japanese, and Korean) fonts.

The difference between version 1.0 and version 1.1 is the name and definition of:

• ascender becomes vertTypoAscender

• descender becomes vertTypoDescender

• lineGap becomes vertTypoLineGap

The vertical header table format follows: Vertical Header Table

Version 1.0
Type

Name Description

Fixed version Version number of the vertical header
table; 0x00010000 for version 1.0

SHORT ascent Distance in FUnits from the centerline to the previous line’s descent.

SHORT descent Distance in FUnits from the centerline to the next line’s ascent.

SHORT lineGap Reserved; set to 0

SHORT advanceHeightMax The maximum advance height measurement -in FUnits found in the font. This value must
be consistent with the entries in the vertical metrics table.

SHORT minTop
SideBearing

The minimum top sidebearing measurement found in the font, in FUnits. This value must be
consistent with the entries in the vertical metrics table.

SHORT minBottom
SideBearing

The minimum bottom sidebearing measurement found in the font,
in FUnits.
This value must be consistent with the entries in the vertical metrics table.

ISO/IEC FDIS 14496-22:2006(E)

90 © ISO/IEC 2006 — All rights reserved

SHORT yMaxExtent Defined as yMaxExtent=
minTopSideBearing+(yMax-yMin)

SHORT caretSlopeRise The value of the caretSlopeRise field divided by the value of the caretSlopeRun Field
determines the slope of the caret. A value of 0 for the rise and a value of 1 for the run
specifies a horizontal caret. A value of 1 for the rise and a value of 0 for the run specifies a
vertical caret. Intermediate values are desirable for fonts whose glyphs are oblique or italic.
For a vertical font, a horizontal caret is best.

SHORT caretSlopeRun See the caretSlopeRise field. Value=1 for nonslanted vertical fonts.

SHORT caretOffset The amount by which the highlight on a slanted glyph needs to be shifted away from the
glyph in order to produce the best appearance. Set value equal to 0 for nonslanted fonts.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT metricDataFormat Set to 0.

USHORT numOf
LongVerMetrics

Number of advance heights in the vertical metrics table.

Version
1.1 Type Name Description

Fixed version Version number of the vertical header
table; 0x00011000 for version 1.1
The representation of a non-zero fractional part, in Fixed numbers.

SHORT vertTypoAscender The vertical typographic ascender for this font. It is the distance in FUnits from the
ideographic em-box center baseline for the vertical axis to the right of the ideographic em-
box and is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000
fUnits will set this field to 500. See the baseline description of the OFF Tag Registry for a
description of the ideographic em-box.

SHORT vertTypoDescender The vertical typographic descender for this font. It is the distance in FUnits from the
ideographic em-box center baseline for the horizontal axis to the left of the ideographic em-
box and is usually set to (head.unitsPerEm)/2. For example, a font with an em of 1000
fUnits will set this field to 500.

SHORT vertTypoLineGap The vertical typographic gap for this font. An application can determine the recommended
line spacing for single spaced vertical text for an OFF font by the following expression: ideo
embox width + vhea.vertTypoLineGap

SHORT advanceHeightMax The maximum advance height measurement -in FUnits found in the font. This value must
be consistent with the entries in the vertical metrics table.

SHORT minTop
SideBearing

The minimum top sidebearing measurement found in the font, in FUnits. This value must be
consistent with the entries in the vertical metrics table.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 91

SHORT minBottom
SideBearing

The minimum bottom sidebearing measurement found in the font,
in FUnits.
This value must be consistent with the entries in the vertical metrics table.

SHORT yMaxExtent Defined as yMaxExtent=
minTopSideBearing+(yMax-yMin)

SHORT caretSlopeRise The value of the caretSlopeRise field divided by the value of the caretSlopeRun Field
determines the slope of the caret. A value of 0 for the rise and a value of 1 for the run
specifies a horizontal caret. A value of 1 for the rise and a value of 0 for the run specifies a
vertical caret. Intermediate values are desirable for fonts whose glyphs are oblique or italic.
For a vertical font, a horizontal caret is best.

SHORT caretSlopeRun See the caretSlopeRise field. Value=1 for nonslanted vertical fonts.

SHORT caretOffset The amount by which the highlight on a slanted glyph needs to be shifted away from the
glyph in order to produce the best appearance. Set value equal to 0 for nonslanted fonts.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT reserved Set to 0.

SHORT metricDataFormat Set to 0.

USHORT numOf
LongVerMetrics

Number of advance heights in the vertical metrics table.

Vertical Header Table Example

Offset/
length

Value Name Comment

0/4 0x00011000 version Version number of the vertical header table, in fixed-point format, is 1.1

4/2 1024 vertTypoAscender Half the em-square height.

6/2 -1024 vertTypoDescender Minus half the em-square height.

8/2 0 vertTypoLineGap Typographic line gap is 0 FUnits.

10/2 2079 advanceHeightMax The maximum advance height measurement found in the font is 2079 FUnits.

12/2 -342 minTopSideBearing The minimum top sidebearing measurement found in the font is -342 FUnits.

14/2 -333 minBottomSideBearing The minimum bottom sidebearing measurement found in the font is -333 FUnits.

16/2 2036 yMaxExtent minTopSideBearing+

ISO/IEC FDIS 14496-22:2006(E)

92 © ISO/IEC 2006 — All rights reserved

(yMax-yMin)=2036.

18/2 0 caretSlopeRise The caret slope rise of 0 and a caret slope run of 1 indicate a horizontal caret for a
vertical font.

20/2 1 caretSlopeRun The caret slope rise of 0 and a caret slope run of 1 indicate a horizontal caret for a
vertical font.

22/2 0 caretOffset Value set to 0 for nonslanted fonts.

24/4 0 reserved Set to 0.

26/2 0 reserved Set to 0.

28/2 0 reserved Set to 0.

30/2 0 reserved Set to 0.

32/2 0 metricDataFormat Set to 0.

34/2 258 numOfLongVerMetrics Number of advance heights in the vertical metrics table is 258.

4.6.9 vmtx – Vertical Metric Table

The vertical metrics table allows you to specify the vertical spacing for each glyph in a vertical font. This table
consists of either one or two arrays that contain metric information (the advance heights and top sidebearings)
for the vertical layout of each of the glyphs in the font. The vertical metrics coordinate system is shown below.

Figure 4 – Vertical Metrics

OFFvertical fonts require both a vertical header table ('vhea') and the vertical metrics table discussed below.
The vertical header table contains information that is general to the font as a whole. The vertical metrics table
contains information that pertains to specific glyphs. The formats of these tables are similar to those for
horizontal metrics (hhea and hmtx).

See clause 6 "OFF CJK Font Guidelines" for more information about constructing CJK (Chinese, Japanese,
and Korean) fonts.

Vertical Origin and Advance Height

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 93

The y coordinate of a glyph's vertical origin is specified as the sum of the glyph's top side bearing (recorded in
the 'vmtx' table) and the top (i.e. maximum y) of the glyph's bounding box.

TrueType OFF fonts contain glyph bounding box information in the Glyph Data ('glyf') table. CFF OFF fonts do
not contain glyph bounding box information, and so for these fonts the top of the glyph's bounding box must
be calculated from the charstring data in the Compact Font Format ('CFF ') table.

OFF 1.3 introduced the optional Vertical Origin ('VORG') table for CFF OFF fonts, which records the y
coordinate of glyphs' vertical origins directly, thus obviating the need to calculate bounding boxes as an
intermediate step. This improves accuracy and efficiency for CFF OFF clients.

The x coordinate of a glyph's vertical origin is not specified in the 'vmtx' table. Vertical writing implementions
may make use of the baseline values in the Baseline ('BASE') table, if present, in order to align the glyphs in
the x direction as appropriate to the desired vertical baseline.

The advance height of a glyph starts from the y coordinate of the glyph's vertical origin and advances
downwards. Its endpoint is at the y coordinate of the vertical origin of the next glyph in the run, by default.
Metric-adjustment OFF layout features such as Vertical Kerning ('vkrn') could modify the vertical advances in
a manner similar to kerning in horizontal mode.

Vertical Metrics Table Format

The overall structure of the vertical metrics table consists of two arrays shown below: the vMetrics array
followed by an array of top side bearings. The top side bearing is measured relative to the top of the origin of
glyphs, for vertical composition of ideographic glyphs.

This table does not have a header, but does require that the number of glyphs included in the two arrays
equals the total number of glyphs in the font.

The number of entries in the vMetrics array is determined by the value of the numOfLongVerMetrics field of
the vertical header table.

The vMetrics array contains two values for each entry. These are the advance height and the top sidebearing
for each glyph included in the array.

In monospaced fonts, such as Courier or Kanji, all glyphs have the same advance height. If the font is
monospaced, only one entry need be in the first array, but that one entry is required.

The format of an entry in the vertical metrics array is given below.

Type Name Description

USHORT advanceHeight The advance height of the glyph. Unsigned integer in FUnits

SHORT topSideBearing The top sidebearing of the glyph.
Signed integer in FUnits.

The second array is optional and generally is used for a run of monospaced glyphs in the font. Only one such
run is allowed per font, and it must be located at the end of the font. This array contains the top sidebearings
of glyphs not represented in the first array, and all the glyphs in this array must have the same advance height
as the last entry in the vMetrics array. All entries in this array are therefore monospaced.

The number of entries in this array is calculated by subtracting the value of numOfLongVerMetrics from the
number of glyphs in the font. The sum of glyphs represented in the first array plus the glyphs represented in
the second array therefore equals the number of glyphs in the font. The format of the top sidebearing array is
given below.

Type Name Description

ISO/IEC FDIS 14496-22:2006(E)

94 © ISO/IEC 2006 — All rights reserved

SHORT topSideBearing[] The top sidebearing of the glyph.
Signed integer in FUnits.

5 Advanced Open Font Layout Tables

5.1 Advanced Open Font Layout Extensions
5.1.1 Overview of Advanced Typographic Layout Extensions

The Advanced Typographic tables (OFF Layout tables) extend the functionality of fonts with either TrueType
or CFF outlines. OFF Layout fonts contain additional information that extends the capabilities of the fonts to
support high-quality international typography:

• OFF Layout fonts allow a rich mapping between characters and glyphs, which supports ligatures,
positional forms, alternates, and other substitutions.

• OFF Layout fonts include information to support features for two-dimensional positioning and glyph
attachment.

• OFF Layout fonts contain explicit script and language information, so a text-processing application
can adjust its behavior accordingly.

• OFF Layout fonts have an open format that allows font developers to define their own typographical
features.

This overview introduces the power and flexibility of the OFF Layout font model. The OFF Layout tables are
described in more detail in clause 5 "Advanced Open Font Layout Tables".

OFF Layout Common Table Formats are documented in subclause 5.2 "OFF Layout Common Table Formats".

Registered OFF Layout Tags for scripts, languages, and baselines, are documented in subclause 5.4 "Layout
Tag Registry".

OFF Layout at a Glance

OFF Layout addresses complex typographical issues that especially affect people using text-processing
applications in multi-lingual and non-Latin environments.

OFF Layout fonts may contain alternative forms of characters and mechanisms for accessing them. For
example, in Arabic, the shape of a character often varies with the character's position in a word. As shown
here, the ha character will take any of four shapes, depending on whether it stands alone or whether it falls at
the beginning, middle, or end of a word. OFF Layout helps a text-processing application determine which
variant to substitute when composing text.

Figure 5 – Isolated, initial, medial, and final forms of the Arabic character ha.

Similarly, OFF Layout helps an application use the correct forms of characters when text is positioned
vertically instead of horizontally, such as with Kanji. For example, Kanji uses alternative forms of parentheses
when positioned vertically.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 95

Figure 6 – Alternative forms of parentheses used when positioning Kanji vertically.

The OFF Layout font format also supports the composition and decomposition of ligatures. For example,
English, French, and other languages based on Latin can substitute a single ligature, such as "fi", for its
component glyphs - in this case, "f" and "i". Conversely, the individual "f" and "i" glyphs could replace the
ligature, possibly to give a text-processing application more flexibility when spacing glyphs to fill a line of
justified text.

Figure 7 – Two Latin glyphs and their associated ligature.

Figure 8 – Three Arabic glyphs and their associated ligature.

Glyph substitution is just one way OFF Layout extends font capabilities. Using precise X and Y coordinates for
positioning glyphs, OFF Layout fonts also can identify points for attaching one glyph to another to create
cursive text and glyphs that need diacritical or other special marks.

OFF Layout fonts also may contain baseline information that specifies how to position glyphs horizontally or
vertically. Because baselines may vary from one script (set of characters) to another, this information is
especially useful for aligning text that mixes glyphs from scripts for different languages.

Figure 9 – A line of text, baselines adjusted, mixing Latin and Arabic scripts.

5.1.2 TrueType versus OFF Layout

A TrueType font is a collection of several tables that contain different types of data: glyph outlines, metrics,
bitmaps, mapping information, and much more. OFF Layout fonts contain all this basic information, plus
additional tables containing information for advanced typography.

Text-processing applications - referred to as "clients" of OFF Layout - can retrieve and parse the information
in OFF Layout tables. So, for example, a text-processing client can choose the correct character shapes and
space them properly.

ISO/IEC FDIS 14496-22:2006(E)

96 © ISO/IEC 2006 — All rights reserved

As much as possible, the tables of OFF Layout define only the information that is specific to the font layout.
The tables do not try to encode information that remains constant within the conventions of a particular
language or the typography of a particular script. Such information that would be replicated across all fonts in
a given language belongs in the text-processing application for that language, not in the fonts.

5.1.3 OFF Layout Terminology

The OFF Layout model is organized around glyphs, scripts, language systems, and features.

Characters versus glyphs

Users don't view or print characters: a user views or prints glyphs. A glyph is a representation of a character.
The character "capital letter A" is represented by the glyph "A" in Times New Roman Bold and "A" in Arial Bold.
A font is a collection of glyphs. To retrieve glyphs, the client uses information in the "cmap" table of the font,
which maps the client's character codes to glyph indices in the table.

Glyphs can also represent combinations of characters and alternative forms of characters: glyphs and
characters do not strictly correspond one-to-one. For example, a user might type two characters, which might
be better represented with a single ligature glyph. Conversely, the same character might take different forms
at the beginning, middle, or end of a word, so a font would need several different glyphs to represent a single
character. OFF Layout fonts contain a table that provides a client with information about possible glyph
substitutions.

Figure 10 – Multiple glyphs for the ampersand character.

Scripts

A script is composed of a group of related characters, which may be used by one or more languages. Latin,
Arabic, and Thai are examples of scripts. A font may use a single script, or it may use many scripts. Within an
OFF Layout font, scripts are identified by unique 4-byte tags.

Figure 11 – Glyphs in the Latin, Kanji, and Arabic scripts.

Language systems

Scripts, in turn, may be divided into language systems. For example, the Latin script is used to write English,
French, or German, but each language has its own special requirements for text processing. A font developer
can choose to provide information that is tailored to the script, to the language system, or to both.

Language systems, unlike scripts, are not necessarily evident when a text-processing client examines the
characters being used. To avoid ambiguity, the user or the operating system needs to identify the language
system. Otherwise, the client will use the default language-system information provided with each script.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 97

Figure 12 – Differences in the English, French, and German language system.

Features

Features define the basic functionality of the font. A font that contains tables to handle diacritical marks will
have a "mark" feature. A font that supports substitution of vertical glyphs will have a "vert" feature.

The OFF Layout feature model provides great flexibility to font developers because features do not have to be
predefined. Instead, font developers can work with application developers to determine useful features for
fonts, add such features to OFF Layout fonts, and enable client applications to support such features.

Figure 13 – The relationship of scripts, language systems, features, and lookups for substitution and
positioning tables.

ISO/IEC FDIS 14496-22:2006(E)

98 © ISO/IEC 2006 — All rights reserved

OFF Layout tables

OFF Layout comprises five new tables: GSUB, GPOS, BASE, JSTF, and GDEF. These tables and their
formats are discussed in detail in the clauses that follow this overview.

GSUB: Contains information about glyph substitutions to handle single glyph substitution, one-to-many
substitution (ligature decomposition), aesthetic alternatives, multiple glyph substitution (ligatures), and
contextual glyph substitution.

GPOS: Contains information about X and Y positioning of glyphs to handle single glyph adjustment,
adjustment of paired glyphs, cursive attachment, mark attachment, and contextual glyph positioning.

BASE: Contains information about baseline Offsets on a script-by-script basis.

JSTF: Contains justification information, including whitespace and Kashida adjustments.

GDEF: Contains information about all individual glyphs in the font: type (simple glyph, ligature, or combining
mark), attachment points (if any), and ligature caret (if a ligature glyph).

Common Table Formats: Several common table formats are used by the OFF Layout tables.

5.1.4 Text Processing with OFF Layout

A text-processing client follows a standard process to convert the string of characters entered by a user into
positioned glyphs. To produce text with OFF Layout fonts:

1. Using the cmap table in the font, the client converts the character codes into a string of glyph indices.

2. Using information in the GSUB table, the client modifies the resulting string, substituting positional or
vertical glyphs, ligatures, or other alternatives as appropriate.

3. Using positioning information in the GPOS table and baseline Offset information in the BASE table,
the client then positions the glyphs.

4. Using design coordinates the client determines device-independent line breaks. Design coordinates
are high-resolution and device-independent.

5. Using information in the JSTF table, the client justifies the lines, if the user has specified
such alignment.

6. The operating system rasterizes the line of glyphs and renders the glyphs in device coordinates that
correspond to the resolution of the output device.

Throughout this process the text-processing client keeps track of the association between the character codes
for the original text and the glyph indices of the final, rendered text. In addition, the client may save language
and script information within the text stream to clearly associate character codes with typographical behavior.

OFF Layout fonts in Windows 95

The core system fonts in the Middle East and Far East versions of Windows 95 are OFF Layout fonts. These
fonts demonstrate aspects of OFF Layout's versatility.

Middle East Windows 95

Middle East Windows 95 uses several Arabic OFF Layout fonts: fixed regular weight, proportional regular
weight, fixed bold, and proportional bold. These fonts take advantage of many glyph substitution features
available in OFF Layout, namely simple substitution (one-to-one contextual), ligature substitution (many-to-
one), and mark set substitutions. In Middle East Windows 95, the operating system itself handles glyph
substitution, using data in the GSUB table of each font.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 99

Far East Windows 95

Far East Windows 95 also uses several OFF Layout fonts: fixed serif, proportional serif, fixed sans serif, and
proportional sans serif. The Japanese fonts take advantage of a subset of OFF Layout features, including
vertical glyph substitution and baseline positioning. As with Middle East Windows 95, the operating system in
Far East Windows 95 will handle glyph substitution, using data in the GSUB table in each font. However, the
text-processing client will need to handle baseline positioning, using data in the BASE table in each font.

5.2 OFF Layout Common Table Formats
5.2.1 Overview

OFF Layout consists of five tables: the Glyph Substitution table (GSUB), the Glyph Positioning table (GPOS),
the Baseline table (BASE), the Justification table (JSTF), and the Glyph Definition table (GDEF). These tables
use some of the same data formats.

This clause explains the conventions used in all OFF Layout tables, and it describes the common table
formats. Separate clauses provide complete details about the GSUB, GPOS, BASE, JSTF, and GDEF tables.

The OFF Layout tables provide typographic information for properly positioning and substituting glyphs,
operations that are required for accurate typography in many language environments. OFF Layout data is
organized by script, language system, typographic feature, and lookup.

Scripts are defined at the top level. A script is a collection of glyphs used to represent one or more languages
in written form (see Figure 14). For instance, a single script-Latin is used to write English, French, German,
and many other languages. In contrast, three scripts-Hiragana, Katakana, and Kanji-are used to write
Japanese. With OFF Layout, multiple scripts may be supported by a single font.

Figure 14 – Glyphs in the Latin, Kanji, and Arabic scripts

A language system may modify the functions or appearance of glyphs in a script to represent a particular
language. For example, the eszet ligature is used in the German language system, but not in French or
English (see Figure 15). And the Arabic script contains different glyphs for writing the Farsi and Urdu
languages. In OFF Layout, language systems are defined within scripts.

Figure15 – Differences in the English, French, and German language systems

A language system defines features, which are typographic rules for using glyphs to represent a language.
Sample features are a "vert" feature that substitutes vertical glyphs in Japanese, a "liga" feature for using
ligatures in place of separate glyphs, and a "mark" feature that positions diacritical marks with respect to base
glyphs in Arabic (see Figure 16). In the absence of language-specific rules, default language system features

ISO/IEC FDIS 14496-22:2006(E)

100 © ISO/IEC 2006 — All rights reserved

apply to the entire script. For instance, a default language system feature for the Arabic script substitutes
initial, medial, and final glyph forms based on a glyph's position in a word.

Figure 16 – A ligature glyph feature substitutes the <etc> ligature for individual glyphs, and a mark
feature positions diacritical marks above an Arabic ligature glyph.

Features are implemented with lookup data that the text-processing client uses to substitute and position
glyphs. Lookups describe the glyphs affected by an operation, the type of operation to be applied to these
glyphs, and the resulting glyph output.

5.2.2 Table Organization

Two OFF Layout tables, GSUB and GPOS, use the same data formats to describe the typographic functions
of glyphs and the languages and scripts that they support: a ScriptList table, a FeatureList table, and a
LookupList table. In GSUB, the tables define glyph substitution data. In GPOS, they define glyph positioning
data. This clause describes these common table formats.

The ScriptList identifies the scripts in a font, each of which is represented by a Script table that contains script
and language-system data. Language system tables reference features, which are defined in the FeatureList.
Each feature table references the lookup data defined in the LookupList that describes how, when, and where
to implement the feature.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 101

Figure 17 – The relationship of scripts, language systems, features, and lookups for substitution and
positioning tables

NOTE The data in the BASE and JSTF tables also is organized by script and language system. However, the data
formats differ from those in GSUB and GPOS, and they do not include a FeatureList or LookupList. The BASE and JSTF
data formats are described in the BASE and JSTF clauses.

The information used to substitute and position glyphs is defined in Lookup subtables. Each subtable supplies
one type of information, depending upon whether the lookup is part of a GSUB or GPOS table. For instance, a
GSUB lookup might specify the glyphs to be substituted and the context in which a substitution occurs, and a
GPOS lookup might specify glyph position adjustments for kerning. OFF Layout has seven types of GSUB
lookups (described in the GSUB clause) and nine types of GPOS lookups (described in the GPOS clause).

Each subtable (except for an Extension LookupType subtable) includes a Coverage table that lists the
"covered" glyphs that will result in a glyph substitution or positioning operation. The Coverage table formats
are described in this clause.

Some substitution or positioning operations may apply to groups, or classes, of glyphs. GSUB and GPOS
Lookup subtables use the Class Definition table to assign glyphs to classes. This clause includes a description
of the Class Definition table formats.

ISO/IEC FDIS 14496-22:2006(E)

102 © ISO/IEC 2006 — All rights reserved

Lookup subtables also may contain device tables, described in this clause, to adjust scaled contour glyph
coordinates for particular output sizes and resolutions. This clauser also describes the data types used in OFF
Layout. Sample tables and lists that illustrate the common data formats are supplied at the end of this clause.

5.2.3 Scripts and Languages

Three tables and their associated records apply to scripts and languages: the Script List table (ScriptList) and
its script record (ScriptRecord), the Script table and its language system record (LangSysRecord), and the
Language System table (LangSys).

Script List Table and Script Record

OFF Layout fonts may contain one or more groups of glyphs used to render various scripts, which are
enumerated in a ScriptList table. Both the GSUB and GPOS tables define Script List tables (ScriptList):

• The GSUB table uses the ScriptList table to access the glyph substitution features that apply to a
script. For details, see the clause, The Glyph Substitution Table (GSUB).

• The GPOS table uses the ScriptList table to access the glyph positioning features that apply to a
script. For details, see the clause, The Glyph Positioning Table (GPOS).

A ScriptList table consists of a count of the scripts represented by the glyphs in the font (ScriptCount) and an
array of records (ScriptRecord), one for each script for which the font defines script-specific features (a script
without script-specific features does not need a ScriptRecord).

If a Script table with the script tag 'DFLT' (default) is present in the ScriptList table, it must have a non-NULL
DefaultLangSys and LangSysCount must be equal to 0. The 'DFLT' Script table should be used if there is not
an explicit entry for the script being formatted.

The ScriptRecord array stores the records alphabetically by a ScriptTag that identifies the script. Each
ScriptRecord consists of a ScriptTag and an Offset to a Script table.

Example 1 at the end of this clause shows a ScriptList table and ScriptRecords for a Japanese font that uses
three scripts.

ScriptList table

Type Name Description

uint16 ScriptCount Number of ScriptRecords

struct ScriptRecord
[ScriptCount]

Array of ScriptRecords
-listed alphabetically by ScriptTag

ScriptRecord

Type Name Description

Tag ScriptTag 4-byte ScriptTag identifier

Offset Script Offset to Script table-from beginning of ScriptList

Script Table and Language System Record

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 103

A Script table identifies each language system that defines how to use the glyphs in a script for a particular
language. It also references a default language system that defines how to use the script's glyphs in the
absence of language-specific knowledge.

A Script table begins with an Offset to the Default Language System table (DefaultLangSys), which defines
the set of features that regulate the default behavior of the script. Next, Language System Count
(LangSysCount) defines the number of language systems (excluding the DefaultLangSys) that use the script.
In addition, an array of Language System Records (LangSysRecord) defines each language system
(excluding the default) with an identification tag (LangSysTag) and an Offset to a Language System table
(LangSys). The LangSysRecord array stores the records alphabetically by LangSysTag.

If no language-specific script behavior is defined, the LangSysCount is set to zero (0), and no
LangSysRecords are allocated.

Script table

Type Name Description

Offset DefaultLangSys Offset to DefaultLangSys table-from beginning of Script table-may be NULL

uint16 LangSysCount Number of LangSysRecords for this script-excluding the DefaultLangSys

struct LangSysRecord
[LangSysCount]

Array of LangSysRecords-listed alphabetically by LangSysTag

LangSysRecord

Type Name Description

Tag LangSysTag 4-byte LangSysTag identifier

Offset LangSys Offset to LangSys table-from beginning of Script table

Language System Table

The Language System table (LangSys) identifies language-system features used to render the glyphs in a
script. (The LookupOrder Offset is reserved for future use.)

Optionally, a LangSys table may define a Required Feature Index (ReqFeatureIndex) to specify one feature
as required within the context of a particular language system. For example, in the Cyrillic script, the Serbian
language system always renders certain glyphs differently than the Russian language system.

Only one feature index value can be tagged as the ReqFeatureIndex. This is not a functional limitation,
however, because the feature and lookup definitions in OFF Layout are structured so that one feature table
can reference many glyph substitution and positioning lookups. When no required features are defined, then
the ReqFeatureIndex is set to 0xFFFF.

All other features are optional. For each optional feature, a zero-based index value references a record
(FeatureRecord) in the FeatureRecord array, which is stored in a Feature List table (FeatureList). The feature
indices themselves (excluding the ReqFeatureIndex) are stored in arbitrary order in the FeatureIndex array.
The FeatureCount specifies the total number of features listed in the FeatureIndex array.

Features are specified in full in the FeatureList table, FeatureRecord, and Feature table, which are described
later in this clause. Example 2 at the end of this clause shows a Script table, LangSysRecord, and LangSys
table used for contextual positioning in the Arabic script.

ISO/IEC FDIS 14496-22:2006(E)

104 © ISO/IEC 2006 — All rights reserved

LangSys table

Type Name Description

Offset LookupOrder = NULL (reserved for an Offset to a reordering table)

uint16 ReqFeatureIndex Index of a feature required for this language system- if no required
features = 0xFFFF

uint16 FeatureCount Number of FeatureIndex values for this language system-excludes the
required feature

uint16 FeatureIndex[FeatureCount] Array of indices into the FeatureList-in arbitrary order

5.2.4 Features and Lookups

Features define the functionality of an OFF Layout font and they are named to convey meaning to the text-
processing client. Consider a feature named "liga" to create ligatures. Because of its name, the client knows
what the feature does and can decide whether to apply it. For more information, see the "Layout Tag Registry"
subclause 5.4. Font developers can use these features, as well as create their own.

After choosing which features to use, the client assembles all lookups from the selected features. Multiple
lookups may be needed to define the data required for different substitution and positioning actions, as well as
to control the sequencing and effects of those actions.

To implement features, a client applies the lookups in the order the lookup definitions occur in the LookupList.
As a result, within the GSUB or GPOS table, lookups from several different features may be interleaved during
text processing. A lookup is finished when the client locates a target glyph or glyph context and performs a
substitution (if specified) or a positioning (if specified).
NOTE The substitution (GSUB) lookups always occur before the positioning (GPOS) lookups. The lookup
sequencing mechanism in TrueType relies on the font to determine the proper order of text-processing operations.

Lookup data is defined in one or more subtables that contain information about specific glyphs and the
operations to be performed on them. Each type of lookup has one or more corresponding subtable definitions.
The choice of a subtable format depends upon two factors: the precise content of the information being
applied to an operation, and the required storage efficiency. (For complete definitions of all lookup types and
subtables, see the the GSUB and GPOS clauses of this document.)

OFF Layout features define information that is specific to the layout of the glyphs in a font. They do not
encode information that is constant within the conventions of a particular language or the typography of a
particular script. Information that would be replicated across all fonts in a given language belongs in the text-
processing application for that language, not in the fonts.

Feature List Table

The headers of the GSUB and GPOS tables contain Offsets to Feature List tables (FeatureList) that
enumerate all the features in a font. Features in a particular FeatureList are not limited to any single script. A
FeatureList contains the entire list of either the GSUB or GPOS features that are used to render the glyphs in
all the scripts in the font.

The FeatureList table enumerates features in an array of records (FeatureRecord) and specifies the total
number of features (FeatureCount). Every feature must have a FeatureRecord, which consists of a

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 105

FeatureTag that identifies the feature and an Offset to a Feature table (described next). The FeatureRecord
array is arranged alphabetically by FeatureTag names.
NOTE The values stored in the FeatureIndex array of a LangSys table are used to locate records in the
FeatureRecord array of a FeatureList table.

FeatureList table

Type Name Description

uint16 FeatureCount Number of FeatureRecords in this table

struct FeatureRecord[FeatureCount] Array of FeatureRecords-zero-based (first feature has FeatureIndex = 0)-
listed alphabetically by FeatureTag

FeatureRecord

Type Name Description

Tag FeatureTag 4-byte feature identification tag

Offset Feature Offset to Feature table-from beginning of FeatureList

Feature Table

A Feature table defines a feature with one or more lookups. The client uses the lookups to substitute or
position glyphs.

Feature tables defined within the GSUB table contain references to glyph substitution lookups, and feature
tables defined within the GPOS table contain references to glyph positioning lookups. If a text-processing
operation requires both glyph substitution and positioning, then both the GSUB and GPOS tables must each
define a Feature table, and the tables must use the same FeatureTags.

A Feature table consists of an Offset to a Feature Parameters (FeatureParams) table (if one has been defined
for this feature - see note in the following paragraph), a count of the lookups listed for the feature
(LookupCount), and an arbitrarily ordered array of indices into a LookupList (LookupListIndex). The
LookupList indices are references into an array of Offsets to Lookup tables.

The format of the Feature Parameters table is specific to a particular feature, and must be specified in the
feature's entry in the Feature Tags subclause 5.4 of the OFF Layout Tag Registry. The length of the Feature
Parameters table must be implicitly or explicitly specified in the Feature Parameters table itself. The
FeatureParams field in the Feature Table records the Offset relative to the beginning of the Feature Table. If a
Feature Parameters table is not needed, the FeatureParams field must be set to NULL.

To identify the features in a GSUB or GPOS table, a text-processing client reads the FeatureTag of each
FeatureRecord referenced in a given LangSys table. Then the client selects the features it wants to implement
and uses the LookupList to retrieve the Lookup indices of the chosen features. Next, the client arranges the
indices in the LookupList order. Finally, the client applies the lookup data to substitute or position glyphs.

Example 3 at the end of this clause shows the FeatureList and Feature tables used to substitute ligatures in
two languages.

Feature table

ISO/IEC FDIS 14496-22:2006(E)

106 © ISO/IEC 2006 — All rights reserved

Type Name Description

Offset FeatureParams Offset to Feature Parameters table (if one has been defined for the feature),
relative to the beginning of the Feature Table; = NULL if not required.

uint16 LookupCount Number of LookupList indices for this feature

uint16 LookupListIndex
[LookupCount]

Array of LookupList indices for this feature -zero-based (first lookup is
LookupListIndex = 0)

Lookup List Table

The headers of the GSUB and GPOS tables contain Offsets to Lookup List tables (LookupList) for glyph
substitution (GSUB table) and glyph positioning (GPOS table). The LookupList table contains an array of
Offsets to Lookup tables (Lookup). The font developer defines the Lookup sequence in the Lookup array to
control the order in which a text-processing client applies lookup data to glyph substitution and positioning
operations. LookupCount specifies the total number of Lookup table Offsets in the array.

Example 4 at the end of this clause shows three ligature lookups in the LookupList table.

LookupList table

Type Name Description

uint16 LookupCount Number of lookups in this table

Offset Lookup[LookupCount] Array of Offsets to Lookup tables-from beginning of LookupList -zero based
(first lookup is Lookup index = 0)

Lookup Table

A Lookup table (Lookup) defines the specific conditions, type, and results of a substitution or positioning
action that is used to implement a feature. For example, a substitution operation requires a list of target glyph
indices to be replaced, a list of replacement glyph indices, and a description of the type of substitution action.

Each Lookup table may contain only one type of information (LookupType), determined by whether the lookup
is part of a GSUB or GPOS table. GSUB supports eight LookupTypes, and GPOS supports nine LookupTypes
(for details about LookupTypes, see the GSUB and GPOS clauses of the document).

Each LookupType is defined with one or more subtables, and each subtable definition provides a different
representation format. The format is determined by the content of the information required for an operation
and by required storage efficiency. When glyph information is best presented in more than one format, a
single lookup may contain more than one subtable, as long as all the subtables are the same LookupType.
For example, within a given lookup, a glyph index array format may best represent one set of target glyphs,
whereas a glyph index range format may be better for another set of target glyphs.

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client makes the substitution/positioning operation. To move to the
"next" glyph, the client will typically skip all the glyphs that participated in the lookup operation: glyphs that
were substituted/positioned as well as any other glyphs that formed a context for the operation. However, in

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 107

the case of pair positioning operations (i.e., kerning), the "next" glyph in a sequence may be the second glyph
of the positioned pair (see pair positioning lookup for details).

A Lookup table contains a LookupType, specified as an integer, that defines the type of information stored in
the lookup. The LookupFlag specifies lookup qualifiers that assist a text-processing client in substituting or
positioning glyphs. The SubTableCount specifies the total number of SubTables. The SubTable array
specifies Offsets, measured from the beginning of the Lookup table, to each SubTable enumerated in the
SubTable array.

Lookup table

Type Name Description

uint16 LookupType Different enumerations for GSUB and GPOS

uint16 LookupFlag Lookup qualifiers

uint16 SubTableCount Number of SubTables for this lookup

Offset SubTable
[SubTableCount]

Array of Offsets to SubTables-from beginning of Lookup table

The LookupFlag uses four bits and one byte:

• Each of the first four bits can be set in order to specify additional instructions for applying a lookup to
a glyph string. The LookUpFlag bit enumeration table provides details about the use of these bits.

• The high byte is set to specify the type of mark attachment.

LookupFlag bit enumeration

Type Name Description

0x0001 RightToLeft This bit relates only to the correct processing of the cursive attachment lookup
type (GPOS lookup type 3). When this bit is set, the last glyph in a given
sequence to which the cursive attachment lookup is applied, will be positioned
on the baseline.
Setting of this bit is not intended to be used by operating systems or
applications to determine text direction.

0x0002 IgnoreBaseGlyphs If set, skips over base glyphs

0x0004 IgnoreLigatures If set, skips over ligatures

0x0008 IgnoreMarks If set, skips over combining marks

0x00F0 Reserved For future use

0xFF00 MarkAttachmentType If not zero, skips over all marks of attachment type different from specified.

For example, in Arabic text, a character string might have the pattern <base character - mark character - base
character>. That string could be converted into a ligature composed of two components, one for each base
character, with the combining mark glyph over the first component. To produce this ligature, the font developer

ISO/IEC FDIS 14496-22:2006(E)

108 © ISO/IEC 2006 — All rights reserved

would set the IgnoreMarks bit to tell the client to ignore the mark, substitute the ligature glyph first, and then
position the mark glyph over the ligature. Alternatively, a lookup which did not set the IgnoreMarks bit could be
used to describe a three-component ligature glyph, composed of the first base glyph, the mark glyph, and the
second base glyph. Here's another example: A lookup which creates a ligature of a base glyph with a top
mark may skip over all bottom marks by specifying the mark attachment type as top marks. You can define
attachment types of marks in the MarkAttachClassDef subtable in the GDEF table.

Coverage Table

Each subtable (except an Extension LookupType subtable) in a lookup references a Coverage table
(Coverage), which specifies all the glyphs affected by a substitution or positioning operation described in the
subtable. The GSUB, GPOS, and GDEF tables rely on this notion of coverage. If a glyph does not appear in a
Coverage table, the client can skip that subtable and move immediately to the next subtable.

A Coverage table identifies glyphs by glyph indices (GlyphIDs) either of two ways:

• As a list of individual glyph indices in the glyph set.

• As ranges of consecutive indices. The range format gives a number of start-glyph and end-glyph
index pairs to denote the consecutive glyphs covered by the table.

In a Coverage table, a format code (CoverageFormat) specifies the format as an integer: 1 = lists, and 2 =
ranges.

A Coverage table defines a unique index value (Coverage Index) for each covered glyph. This unique value
specifies the position of the covered glyph in the Coverage table. The client uses the Coverage Index to look
up values in the subtable for each glyph.

Coverage Format 1

Coverage Format 1 consists of a format code (CoverageFormat) and a count of covered glyphs (GlyphCount),
followed by an array of glyph indices (GlyphArray). The glyph indices must be in numerical order for binary
searching of the list. When a glyph is found in the Coverage table, its position in the GlyphArray determines
the Coverage Index that is returned-the first glyph has a Coverage Index = 0, and the last glyph has a
Coverage Index = GlyphCount -1.

Example 5 at the end of this clause shows a Coverage table that uses Format 1 to list the GlyphIDs of all
lowercase descender glyphs in a font.

CoverageFormat1 table: Individual glyph indices

Type Name Description

uint16 CoverageFormat Format identifier-format = 1

uint16 GlyphCount Number of glyphs in the GlyphArray

GlyphID GlyphArray[GlyphCount] Array of GlyphIDs-in numerical order

Coverage Format 2

Format 2 consists of a format code (CoverageFormat) and a count of glyph index ranges (RangeCount),
followed by an array of records (RangeRecords). Each RangeRecord consists of a start glyph index (Start), an
end glyph index (End), and the Coverage Index associated with the range's Start glyph. Ranges must be in
GlyphID order, and they must be distinct, with no overlapping.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 109

The Coverage Indexes for the first range begin with zero (0), and the Start Coverage Indexes for each
succeeding range are determined by adding the length of the preceding range (End GlyphID - Start GlyphID +
1) to the array Index. This allows for a quick calculation of the Coverage Index for any glyph in any range
using the formula: Coverage Index (GlyphID) = StartCoverageIndex + GlyphID - Start GlyphID.

Example 6 at the end of this clause shows a Coverage table that uses Format 2 to identify a range of numeral
glyphs in a font.

CoverageFormat2 table: Range of glyphs

Type Name Description

uint16 CoverageFormat Format identifier-format = 2

uint16 RangeCount Number of RangeRecords

struct RangeRecord
[RangeCount]

Array of glyph ranges-ordered by Start GlyphID

RangeRecord

Type Name Description

GlyphID Start First GlyphID in the range

GlyphID End Last GlyphID in the range

uint16 StartCoverageIndex Coverage Index of first GlyphID in range

Class Definition Table

In OFF Layout, index values identify glyphs. For efficiency and ease of representation, a font developer can
group glyph indices to form glyph classes. Class assignments vary in meaning from one lookup subtable to
another. For example, in the GSUB and GPOS tables, classes are used to describe glyph contexts. GDEF
tables also use the idea of glyph classes.

Consider a substitution action that replaces only the lowercase ascender glyphs in a glyph string. To more
easily describe the appropriate context for the substitution, the font developer might divide the font's
lowercase glyphs into two classes, one that contains the ascenders and one that contains the glyphs without
ascenders.

A font developer can assign any glyph to any class, each identified with an integer called a class value. A
Class Definition table (ClassDef) groups glyph indices by class, beginning with Class 1, then Class 2, and so
on. All glyphs not assigned to a class fall into Class 0. Within a given class definition table, each glyph in the
font belongs to exactly one class.

The ClassDef table can have either of two formats: one that assigns a range of consecutive glyph indices to
different classes, or one that puts groups of consecutive glyph indices into the same class.

Class Definition Table Format 1

ISO/IEC FDIS 14496-22:2006(E)

110 © ISO/IEC 2006 — All rights reserved

The first class definition format (ClassDefFormat1) specifies a range of consecutive glyph indices and a list of
corresponding glyph class values. This table is useful for assigning each glyph to a different class because the
glyph indices in each class are not grouped together.

A ClassDef Format 1 table begins with a format identifier (ClassFormat). The range of glyph indices
(GlyphIDs) covered by the table is identified by two values: the GlyphID of the first glyph (StartGlyph), and the
number of consecutive GlyphIDs (including the first one) that will be assigned class values (GlyphCount). The
ClassValueArray lists the class value assigned to each GlyphID, starting with the class value for StartGlyph
and following the same order as the GlyphIDs. Any glyph not included in the range of covered GlyphIDs
automatically belongs to Class 0.

Example 7 at the end of this clause uses Format 1 to assign class values to the lowercase, x-height, ascender,
and descender glyphs in a font.

ClassDefFormat1 table: Class array

Type Name Description

uint16 ClassFormat Format identifier-format = 1

GlyphID StartGlyph First GlyphID of the ClassValueArray

uint16 GlyphCount Size of the ClassValueArray

uint16 ClassValueArray[GlyphCount] Array of Class Values-one per GlyphID

Class Definition Table Format 2

The second class definition format (ClassDefFormat2) defines multiple groups of glyph indices that belong to
the same class. Each group consists of a discrete range of glyph indices in consecutive order (ranges cannot
overlap).

The ClassDef Format 2 table contains a format identifier (ClassFormat), a count of ClassRangeRecords that
define the groups and assign class values (ClassRangeCount), and an array of ClassRangeRecords ordered
by the GlyphID of the first glyph in each record (ClassRangeRecord).

Each ClassRangeRecord consists of a Start glyph index, an End glyph index, and a Class value. All GlyphIDs
in a range, from Start to End inclusive, constitute the class identified by the Class value. Any glyph not
covered by a ClassRangeRecord is assumed to belong to Class 0.

Example 8 at the end of this clause uses Format 2 to assign class values to four types of glyphs in the Arabic
script.

ClassDefFormat2 table: Class ranges

Type Name Description

uint16 ClassFormat Format identifier-format = 2

uint16 ClassRangeCount Number of ClassRangeRecords

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 111

struct ClassRangeRecord
[ClassRangeCount]

Array of ClassRangeRecords-ordered by Start GlyphID

ClassRangeRecord

Type Name Description

GlyphID Start First GlyphID in the range

GlyphID End Last GlyphID in the range

uint16 Class Applied to all glyphs in the range

Device Tables

Glyphs in a font are defined in design units specified by the font developer. Font scaling increases or
decreases a glyph's size and rounds it to the nearest whole pixel. However, precise glyph positioning often
requires adjustment of these scaled and rounded values. Hinting, applied to points in the glyph outline, is an
effective solution to this problem, but it may require the font developer to redesign or re-hint glyphs.

Another solution-used by the GPOS, BASE, JSTF, and GDEF tables-is to use a Device table to specify
correction values to adjust the scaled design units. A Device table applies the correction values to the range of
sizes identified by StartSize and EndSize, which specify the smallest and largest pixel-per-em (ppem) sizes
needing adjustment.

Because the adjustments often are very small (a pixel or two), the correction can be compressed into a 2-, 4-,
or 8-bit representation per size. Two bits can represent a number in the range {-2, -1, 0, or 1}, four bits can
represent a number in the range {-8 to 7}, and eight bits can represent a number in the range {-128 to 127}.
The Device table identifies one of three data formats-signed 2-, 4,- or 8-bit values-for the adjustment values
(DeltaFormat). A single Device table provides delta information for one coordinate at a range of sizes.

Type Name Description

1 2 Signed 2-bit value, 8 values per uint16

2 4 Signed 4-bit value, 4 values per uint16

3 8 Signed 8-bit value, 2 values per uint16

The 2-, 4-, or 8-bit signed values are packed into uint16's most significant bits first. For example, using a
DeltaFormat of 2 (4-bit values), an array of values equal to {1, 2, 3, -1} would be represented by the
DeltaValue 0x123F.

The DeltaValue array lists the number of pixels to adjust specified points on the glyph, or the entire glyph, at
each ppem size in the targeted range. In the array, the first index position specifies the number of pixels to
add or subtract from the coordinate at the smallest ppem size that needs correction, the second index position
specifies the number of pixels to add or subtract from the coordinate at the next ppem size, and so on for each
ppem size in the range.

Example 9 at the end of this clause uses a Device table to define the minimum extent value for a math script.

Device table

ISO/IEC FDIS 14496-22:2006(E)

112 © ISO/IEC 2006 — All rights reserved

Type Name Description

uint16 StartSize Smallest size to correct-in ppem

uint16 EndSize Largest size to correct-in ppem

uint16 DeltaFormat Format of DeltaValue array data: 1, 2, or 3

uint16 DeltaValue[] Array of compressed data

5.2.5 Common Table Examples

The rest of this clause describes and illustrates examples of all the common table formats. All the examples
reflect unique parameters, but the samples provide a useful reference for building tables specific to other
situations.

The examples have three columns showing hex data, source, and comments.

Example 1: ScriptList Table and ScriptRecords

Example 1 illustrates a ScriptList table and ScriptRecord definitions for a Japanese font with multiple scripts:
Han Ideographic, Kana, and Latin. Each script has script-specific behavior.

Example 1

Hex Data Source Comment

 ScriptList
TheScriptList ScriptList table definintion

0003 3 ScriptCount
ScriptRecord[0],in alphabetical order by ScriptTag

68616E69 "hani" ScriptTag, Han Ideographic script

0014 HanIScriptTable Offset to Script table
ScriptRecord[1]

6B616E61 "kana" ScriptTag, Hiragana and Katakana scripts

0018 KanaScriptTable Offset to Script table
ScriptRecord[2]

6C61746E "latn" ScriptTag, Latin script

001C LatinScriptTable Offset to Script table

Example 2: Script Table, LangSysRecord, and LangSys Table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 113

Example 2 illustrates the Script table, LangSysRecord, and LangSys table definitions for the Arabic script and
the Urdu language system. The default LangSys table defines three default Arabic script features used to
replace certain glyphs in words with their proper initial, medial, and final glyph forms. These contextual
substitutions are invariant and occur in all language systems that use the Arabic script.

Many alternative glyphs in the Arabic script have language-specific uses. For instance, the Arabic, Farsi, and
Urdu language systems use different glyphs for numerals. To maintain character-set compatibility, the
Unicode Standard includes separate character codes for the Arabic and Farsi numeral glyphs. However, the
standard uses the same character codes for Farsi and Urdu numerals, even though three of the Urdu glyphs
(4, 6, and 7) differ from the Farsi glyphs. To access and display the proper glyphs for the Urdu numerals,
users of the text-processing client must enter the character codes for the Farsi numerals. Then the text-
processing client uses a required OFF Layout glyph substitution feature, defined in the Urdu LangSys table, to
access the correct Urdu glyphs for the 4, 6, and 7 numerals.
NOTE The Urdu LangSys table repeats the default script features. This repetition is necessary because the Urdu
language system also uses alternative glyphs in the initial, medial, and final glyph positions in words.

Example 2

Hex Data Source Comment

 Script
ArabicScriptTable Script table definition

000A DefLangSys Offset to DefaultLangSys table

0001 1 LangSysCount LangSysRecord[0], in alphabetical order by LangSysTag

55524420 "URD " LangSysTag, Urdu language

0016 UrduLangSys Offset to LangSys table for Urdu

 LangSys
DefLangSys default LangSys table definition

0000 NULL LookupOrder, reserved, null

FFFF 0xFFFF ReqFeatureIndex, no required features

0003 3 FeatureCount

0000 0 FeatureIndex[0], in arbitrary order
"init" feature (initial glyph)

0001 1 FeatureIndex[1], "fina" feature (final glyph)

0002 2 FeatureIndex[2], for "medi" feature (medial glyph)

ISO/IEC FDIS 14496-22:2006(E)

114 © ISO/IEC 2006 — All rights reserved

 LangSys
UrduLangSys LangSys table definition

0000 NULL LookupOrder, reserved, null

0003 3 ReqFeatureIndex, numeral subsitution in Urdu

0003 3 FeatureCount

0000 0 FeatureIndex[0], in arbitrary order
"init" feature (initial glyph)

0001 1 FeatureIndex[1], "fina" feature (final glyph)

0002 2 FeatureIndex[2], "medi" feature (medial glyph)

Example 3: FeatureList Table and Feature Table

Example 3 shows the FeatureList and Feature table definitions for ligatures in the Latin script. The FeatureList
has three features, all optional and named "liga." One feature, also a default, implements ligatures in Latin if
no language-specific feature specifies other ligatures. Two other features implement ligatures in the Turkish
and German languages, respectively.

Three lookups define glyph substitutions for rendering ligatures in this font. The first lookup produces the "ffi"
and "fi" ligatures; the second produces the "ffl," "fl," and "ff" ligatures; and the third produces the eszet ligature.

The ligatures that begin with an "f" are separated into two sets because Turkish has a dotless "i" glyph and so
does not use "ffi" and "fi" ligatures. However, Turkish does use the "ffl," "fl," and "ff" ligatures, and the
TurkishLigatures feature table lists this one lookup.

Only the German language system uses the eszet ligature, so the GermanLigatures feature table includes a
lookup for rendering that ligature.

Because the Latin script can use both sets of ligatures, the DefaultLigatures feature table defines two
LookupList indices: one for the "ffi" and "fi" ligatures, and one for the "ffl," "fl," and "ff" ligatures. If the text-
processing client selects this feature, then the font applies both lookups.
NOTE The TurkishLigatures and DefaultLigatures feature tables both list a LookupListIndex of one (1) for the "ffl," "fl,"
and "ff" ligatures lookup. This is because language-specific lookups override all default language-system lookups, and a
language-system feature table must explicitly list all lookups that apply to the language.

Example 3

Hex Data Source Comment

 FeatureList
TheFeatureList FeatureList table definition

0003 3 FeatureCount
FeatureRecord[0]

6C696761 "liga" FeatureTag

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 115

0014 TurkishLigatures Offset to Feature table, FflFfFlLiga FeatureRecord[1]

6C696761 "liga" FeatureTag

001A DefaultLigatures Offset to Feature table, FfiFiLiga, FflFfFlLiga FeatureRecord[2]

6C696761 "liga" FeatureTag

0022 GermanLigatures Offset to Feature table, EszetLiga

 Feature
TurkishLigatures

Feature table definition

0000 NULL FeatureParams, reserved, null

0001 1 LookupCount

0000 1 LookupListIndex[1], ffl, fl, ff ligature substitution Lookup

 Feature
DefaultLigatures

Feature table definition

0000 NULL FeatureParams - reserved, null

0002 2 LookupCount

0000 0 LookupListIndex[0], in arbitrary order, ffi, fi ligatures

0001 1 LookupListIndex[1], ffl, fl, ff ligature substitution Lookup

 Feature
GermanLigatures Feature table definition

0000 NULL FeatureParams - reserved, null

0001 3 LookupCount

0000 0 LookupListIndex[0], in arbitrary order, ffi, fi ligatures

0001 1 LookupListIndex[1], ffl, fl, ff ligature substitution Lookup

0002 2 LookupListIndex[2], eszet ligature substitution Lookup

ISO/IEC FDIS 14496-22:2006(E)

116 © ISO/IEC 2006 — All rights reserved

Example 4: LookupList Table and Lookup Table

A continuation of Example 3, Example 4 shows three ligature lookups in the LookupList table. The first
generates the "ffi" and "fi" ligatures; the second produces the "ffl," "fl," and "ff" ligatures; and the third
generates the eszet ligature. Each lookup table defines an Offset to a subtable that contains data for the
ligature substitution.

Example 4

Hex Data Source Comment

 LookupList
TheLookupList LookupList table definition

0003 3 LookupCount

0008 FfiFiLookup Offset to Lookup[0] table, in design order

0010 FflFlFfLookup Offset to Lookup[1] table

0018 EszetLookup Offset to Lookup[2] table

 Lookup
FfiFiLookup Lookup[0] table definition

0004 4 LookupType, ligature subst

000C 0x000C LookupFlag, IgnoreLigatures, IgnoreMarks

0001 1 SubTableCount

0018 FfiFiSubtable Offset to FfiFi ligature substitution subtable

 Lookup
FflFlFfLookup Lookup[1] table definition

0004 4 LookupType
ligature subst

000C 0x000C LookupFlag- IgnoreLigatures, IgnoreMarks

0001 1 SubTableCount

0028 FflFlFfSubtable Offset to FflFlFf ligature substitution subtable

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 117

 Lookup
EszetLookup Lookup[2] table definition

0004 4 LookupType- ligature subst

000C 0x000C LookupFlag- IgnoreLigatures, IgnoreMarks

0001 1 SubTableCount

0038 EszetSubtable Offset to Eszet ligature substitution subtable

Example 5: CoverageFormat1 Table (GlyphID List)

Example 5 illustrates a Coverage table that lists the GlyphIDs of all lowercase descender glyphs in a font. The
table uses the list format instead of the range format because the GlyphIDs for the descender glyphs are not
consecutively ordered.

Example 5

Hex Data Source Comment

 CoverageFormat1
DescenderCoverage Coverage table definition

0001 1 CoverageFormat lists

0005 5 GlyphCount

0038 gGlyphID GlyphArray[0], in GlyphID order

003B jGlyphID GlyphArray[1]

0041 pGlyphID GlyphArray[2]

0042 qGlyphID GlyphArray[3]

004A yGlyphID GlyphArray[4]

Example 6: CoverageFormat2 Table (GlyphID Ranges)

Example 6 shows a Coverage table that defines ten numeral glyphs (0 through 9). The table uses the range
format instead of the list format because the GlyphIDs are ordered consecutively in the font. The
StartCoverageIndex of zero (0) indicates that the first GlyphID, for the zero glyph, returns a Coverage Index of
0. The second GlyphID, for the numeral one (1) glyph, returns a Coverage Index of 1, and so on.

Example 6

Hex Data Source Comment

ISO/IEC FDIS 14496-22:2006(E)

118 © ISO/IEC 2006 — All rights reserved

 CoverageFormat2
NumeralCoverage Coverage table definition

0002 2 CoverageFormat, GlyphID ranges

0001 1 RangeCount
RangeRecord[0]

004E 0glyphID Start GlyphID

0057 9glyphID End GlyphID

0000 0 StartCoverageIndex, first CoverageIndex = 0

Example 7: ClassDefFormat1 Table (Class Array)

The ClassDef table in Example 7 assigns class values to the lowercase glyphs in a font. The x-height glyphs
are in Class 0, the ascender glyphs are in Class 1, and the descender glyphs are in Class 2. The array begins
with the index for the lowercase "a" glyph.

Example 7

Hex Data Source Comment

 ClassDefFormat1
LowercaseClassDef ClassDef table definition

0001 1 ClassFormat

0032 aGlyphID StartGlyph

001A 26 GlyphCount

0000 0 aGlyph, Xheight Class 0

0001 1 bGlyph, Ascender Class 1

0000 0 cGlyph, Xheight Class 0

0001 1 dGlyph, Ascender Class 1

0000 0 eGlyph, Xheight Class 0

0001 1 fGlyph, Ascender Class 1

0002 2 gGlyph, Descender Class 2

0001 1 hGlyph, Ascender Class 1

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 119

0000 0 iGlyph, Ascender Class 1

0002 2 jGlyph, Descender Class 2

0001 1 kGlyph, Ascender Class 1

0001 1 lGlyph, Ascender Class 1

0000 0 mGlyph, Xheight Class 0

0000 0 nGlyph, Xheight Class 0

0000 0 oGlyph, Xheight Class 0

0002 2 pGlyph, Descender Class 2

0002 2 qGlyph, Descender Class 2

0000 0 rGlyph, Xheight Class 0

0000 0 sGlyph, Xheight Class 0

0001 1 tGlyph, Ascender Class 1

0000 0 uGlyph, Xheight Class 0

0000 0 vGlyph, Xheight Class 0

0000 0 wGlyph, Xheight Class 0

0000 0 xGlyph, Xheight Class 0

0002 2 yGlyph, Descender Class 2

0000 0 zGlyph, Xheight Class 0

Example 8: ClassDefFormat2 Table (Class Ranges)

In Example 8, the ClassDef table assigns class values to four types of glyphs in the Arabic script: medium-
height base glyphs, high base glyphs, very high base glyphs, and default mark glyphs. The table lists only
Class 1, Class 2, and Class 3; all glyphs not explicitly assigned a class fall into Class 0.

The table uses the range format because the GlyphIDs in each class are ordered consecutively in the font. In
the ClassRange array, ClassRange definitions are ordered by the Start glyph index in each range. The indices
of the high base glyphs, defined in ClassRange[0], are first in the font and have a class value of 2.
ClassRange[1] defines all the very high base glyphs and assigns a class value of 3. ClassRange[2] contains
all default mark glyphs; the class value is 1. Class 0 consists of all the medium-height base glyphs, which are
not explicitly assigned a class value.

ISO/IEC FDIS 14496-22:2006(E)

120 © ISO/IEC 2006 — All rights reserved

Example 8

Hex
Data

Source Comment

 ClassDefFormat2
GlyphHeightClassDef

Class table definition

0002 2 Class Format ranges

0003 3 ClassRangeCount
ClassRange[0], ordered by StartGlyphID

0030 tahGlyphID Start
first GlyphID in the range

0031 dhahGlyphID End
Last GlyphID in the range

0002 2 Class, high base glyphs, ClassRange[1]

0040 cafGlyphID Start, first GlyphID in the range

0041 gafGlyphID End, Last GlyphID in the range

0003 3 Class, very high base glyphs, ClassRange[2]

00D2 fathatanDefaultGlyphID Start, first GlyphID in the range

00D3 dammatanDefaultGlyphID End, Last GlyphID in the range

0001 1 Class
default marks

Example 9: Device Table

Example 9 defines the minimum extent value for a math script, using a Device table to adjust the value
according to the size of the output font. Here, the Device table defines single-pixel adjustments for font sizes
from 11 ppem to 15 ppem. The DeltaFormat is 1, which signifies a packed array of signed 2-bit values, eight
values per uint16.

Example 9

Hex Data Source Comment

 DeviceTableFormat1
MinCoordDeviceTable Device Table definition

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 121

000B 11 StartSize, 11 ppem

000F 15 EndSize, 15 ppem

0001 1 DeltaFormat
signed 2 bit value, 8 values
per uint16

 1 increase 11ppem by 1 pixel

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

 1 increase 14ppem by 1 pixel

5540 1 increase 15ppem by 1 pixel

5.3 Advanced Typographic Tables
There are also several optional tables that support vertical layout as well as other advanced typographic
functions:

Advanced Typographic Tables

Tag Name

BASE Baseline data

GDEF Glyph definition data

GPOS Glyph positioning data

GSUB Glyph substitution data

JSTF Justification data

5.3.1 BASE Baseline Table

The Baseline table (BASE) provides information used to align glyphs of different scripts and sizes in a line of
text, whether the glyphs are in the same font or in different fonts. To improve text layout, the Baseline table
also provides minimum (min) and maximum (max) glyph extent values for each script, language system, or
feature in a font.

Overview

Lines of text composed with glyphs of different scripts and point sizes need adjustment to correct interline
spacing and alignment. For example, glyphs designed to be the same point size often differ in height and
depth from one font to another (see Figure 18). This variation can produce interline spacing that looks too
large or too small, and diacritical marks, math symbols, subscripts, and superscripts may be clipped.

ISO/IEC FDIS 14496-22:2006(E)

122 © ISO/IEC 2006 — All rights reserved

Figure 18 – Incorrect alignment of glyphs from Latin and Kanji (Latin dominant)

In addition, different baselines can cause text lines to waver visually as glyphs from different scripts are placed
next to one another. For example, ideographic scripts position all glyphs on a low baseline. With Latin scripts,
however, the baseline is higher, and some glyphs descend below it. Finally, several Indic scripts use a high
"hanging baseline" to align the tops of the glyphs.

To solve these composition problems, the BASE table recommends baseline positions and min/max extents
for each script (see Figure 19). Script min/max extents can be modified for particular language systems or
features.

Figure 19 – Proper alignment of glyphs from Latin and Kanji (Latin dominant)

Baseline Values

The BASE table uses a model that assumes one script at one size is the "dominant run" during text
processing-that is, all other baselines are defined in relation to this the dominant run.

For example, Latin glyphs and the ideographic Kanji glyphs have different baselines. If a Latin script of a
particular size is specified as the dominant run, then all Latin glyphs of all sizes will be aligned on the roman
baseline, and all Kanji glyphs will be aligned on the lower ideographic baseline defined for use with Latin text.
As a result, all glyphs will look aligned within each line of text.

The BASE table supplies recommended baseline positions; a client can specify others. For instance, the client
may want to assign baseline positions different from those in the font.

Figure 20 – Comparing Latin and Kanji baselines, with characters aligned according to the dominant
run

Min/Max Extent Values

The BASE table gives clients the option of using script, language system, or feature-specific extent values to
improve composition (see Figure 20). For example, suppose a font contains glyphs in Latin and Arabic scripts,
and the min/max extents defined for the Arabic script are larger than the Latin extents. The font also supports
Urdu, a language system that includes specific variants of the Arabic glyphs, and some Urdu variants require

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 123

larger min/max extents than the default Arabic extents. To accommodate the Urdu glyphs, the BASE table can
define language-specific min/max extent values that will override the default Arabic extents-but only when
rendering Urdu glyphs.

The BASE table also can define feature-specific min/max values that apply only when a particular feature is
enabled. Suppose that the font described earlier also supports the Farsi language system, which has one
feature that requires a minor alteration of the Arabic script extents to display properly. The BASE table can
specify these extent values and apply them only when that feature is enabled in the Farsi language.

5.3.1.1 BASE Table Organization

The BASE table begins with Offsets to Axis tables that describe layout data for the horizontal and vertical
layout directions of text. A font can provide layout data for both text directions or for only one text direction:

• The Horizontal Axis table (HorizAxis) defines information used to lay out text horizontally. All baseline
and min/max values refer to the Y direction.

• The Vertical Axis table (VertAxis) defines information used to lay out text vertically. All baseline and
min/max values refer to the X direction.

NOTE The same baseline tags can be used for both horizontal and vertical axes. For example, the 'romn' tag
description used for the vertical axis would indicate the baseline of rotated Latin text.

Figure 21 shows how the BASE table is organized.

Figure 21 – High-level organization of BASE table

Text Direction

The HorizAxis and VertAxis tables organize layout information by script in BaseScriptList tables. A
BaseScriptList enumerates all scripts in the font that are written in a particular direction (horizontal or vertical).

For example, consider a Japanese font that contains Kanji, Kana, and Latin scripts. Because all three scripts
are rendered horizontally, all three are defined in the BaseScriptList of the HorizAxis table. Kanji and Kana
also are rendered vertically, so those two scripts are defined in the BaseScriptList of the VertAxis table, too.

Baseline Data

ISO/IEC FDIS 14496-22:2006(E)

124 © ISO/IEC 2006 — All rights reserved

Each Axis table also references a BaseTagList, which identifies all the baselines for all scripts written in the
same direction (horizontal or vertical). The BaseTagList may also include baseline tags for scripts supported
in other fonts.

Each script in a BaseScriptList is represented by a BaseScriptRecord. This record references a BaseScript
table, which contains layout data for the script. In turn, the BaseScript table references a BaseValues table,
which contains baseline information and several MinMax tables that define min/max extent values.

The BaseValues table specifies the coordinate values for all baselines in the BaseTagList. In addition, it
identifies one of these baselines as the default baseline for the script. As glyphs in a script are scaled, they
grow or shrink from the script's default baseline position. Each baseline can have unique coordinates. This
contrasts with TrueType 1.0, which implies a single, fixed baseline for all scripts in a font. With the OFF Layout
tables, each script can be aligned independently, although more than one script may use the same baseline
values.

Baseline coordinates for scripts in the same font must be specified in relation to each other for correct
alignment of the glyphs. Consider the font, discussed earlier, containing both Latin and Kanji glyphs. If the
BaseTagList of the HorizAxis table specifies two baselines, the roman and the ideographic, then the layout
data for both the Latin and Kanji scripts will specify coordinate positions for both baselines:

• The BaseValues table for the Latin script will give coordinates for both baselines and specify the
roman baseline as the default.

• The BaseValues table for the Kanji script will give coordinates for both baselines and specify the
ideographic baseline as the default.

Min/Max Extents

The BaseScript table can define minimum and maximum extent values for each script, language system, or
feature. (These values are distinct from the min/max extent values recorded for the font as a whole in the
head, hhea, vhea, and OS/2 tables.) These extent values appear in three tables:

• The DefaultMinMax table defines the default min/max extents for the script.

• A MinMax table, referenced through a BaseLangSysRecord, specifies min/max extents to
accommodate the glyphs in a specific language system.

• A FeatMinMaxRecord, referenced from the MinMax table, provides min/max extent values to support
feature-specific glyph actions.

NOTE Language-system or feature-specific extent values may be essential to define some fonts. However, the
default min/max extent values specified for each script should usually be enough to support high-quality text layout.

The actual baseline and min/max extent values used by the BASE table reside in BaseCoord tables. Three
formats are defined for BaseCoord table data. All formats define single X or Y coordinate values in design
units, but two formats support fine adjustments to these values based on a contour point or a Device table.

The rest of this clause describes all the tables defined within the BASE table. Sample tables and lists that
illustrate typical data for a font are supplied at the end of the clause.

5.3.1.2 Base Table Structure

BASE Header

The BASE table begins with a header that consists of a version number for the table (Version), initially set to
1.0 (0x00010000), and Offsets to horizontal and vertical Axis tables (HorizAxis and VertAxis).

Each Axis table stores all baseline information and min/max extents for one layout direction. The HorizAxis
table contains Y values for horizontal text layout; the VertAxis table contains X values for vertical text layout.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 125

A font may supply information for both layout directions. If a font has values for only one text direction, the
Axis table Offset value for the other direction will be set to NULL.

Example 1 at the end of this clause shows a sample BASE Header.

BASE Header

Type Name Description

fixed32 Version Version of the BASE table-initially 0x00010000

Offset HorizAxis Offset to horizontal Axis table-from beginning of BASE table-may be NULL

Offset VertAxis Offset to vertical Axis table-from beginning of BASE table-may be NULL

Axis Tables: HorizAxis and VertAxis

An Axis table is used to render scripts either horizontally or vertically. It consists of Offsets, measured from the
beginning of the Axis table, to a BaseTagList and a BaseScriptList:

• The BaseScriptList enumerates all scripts rendered in the text layout direction.

• The BaseTagList enumerates all baselines used to render the scripts in the text layout direction. If no
baseline data is available for a text direction, the Offset to the corresponding BaseTagList may be set
to NULL.

Example 1 at the end of this clause shows an example of an Axis table.

Axis Table

Type Name Description

Offset BaseTagList Offset to BaseTagList table-from beginning of Axis table-may be NULL

Offset BaseScriptList Offset to BaseScriptList table-from beginning of Axis table

BaseTagList Table

The BaseTagList table identifies the baselines for all scripts in the font that are rendered in the same text
direction. Each baseline is identified with a 4-byte baseline tag. The Baseline Tags of the OFF Tag Registry
lists currently registered baseline tags. The BaseTagList can define any number of baselines, and it may
include baseline tags for scripts supported in other fonts.

Each script in the BaseScriptList table must designate one of these BaseTagList baselines as its default,
which the OFF Layout Services use to align all glyphs in the script. Even though the BaseScriptList and the
BaseTagList are defined independently of one another, the BaseTagList typically includes a tag for each
different default baseline needed to render the scripts in the layout direction. If some scripts use the same
default baseline, the BaseTagList needs to list the common baseline tag only once.

The BaseTagList table consists of an array of baseline identification tags (BaselineTag), listed alphabetically,
and a count of the total number of baseline Tags in the array (BaseTagCount).

Example 1 at the end of this clause shows a sample BaseTagList table.

BaseTagList table

ISO/IEC FDIS 14496-22:2006(E)

126 © ISO/IEC 2006 — All rights reserved

Type Name Description

uint16 BaseTagCount Number of baseline identification tags in this text direction-may be zero (0)

Tag BaselineTag[BaseTagCount] Array of 4-byte baseline identification tags-must be in alphabetical order

BaseScriptList Table

The BaseScriptList table identifies all scripts in the font that are rendered in the same layout direction. If a
script is not listed here, then the text-processing client will render the script using the layout information
specified for the entire font.

For each script listed in the BaseScriptList table, a BaseScriptRecord must be defined that identifies the script
and references its layout data. BaseScriptRecords are stored in the BaseScriptRecord array, ordered
alphabetically by the BaseScriptTag in each record. The BaseScriptCount specifies the total number of
BaseScriptRecords in the array.

Example 1 at the end of this clause shows a sample BaseScriptList table.

BaseScriptList table

Type Name Description

uint16 BaseScriptCount Number of BaseScriptRecords defined

struct BaseScriptRecord[BaseScriptCount] Array of BaseScriptRecords-in alphabetical order by
BaseScriptTag

BaseScriptRecord

A BaseScriptRecord contains a script identification tag (BaseScriptTag), which must be identical to the
ScriptTag used to define the script in the ScriptList of a GSUB or GPOS table. Each record also must include
an Offset to a BaseScript table that defines the baseline and min/max extent data for the script.

Example 1 at the end of this clause shows a sample BaseScriptRecord.

BaseScriptRecord

Type Name Description

Tag BaseScriptTag 4-byte script identification tag

Offset BaseScript Offset to BaseScript table-from beginning of BaseScriptList

BaseScript Table

A BaseScript table organizes and specifies the baseline data and min/max extent data for one script. Within a
BaseScript table, the BaseValues table contains baseline information, and one or more MinMax tables contain
min/max extent data.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 127

The BaseValues table identifies the default baseline for the script and lists coordinate positions for each
baseline named in the corresponding BaseTagList. Each script can assign a different position to each
baseline, so each script can be aligned independently in relation to any other script. (For more details, see the
BaseValues table description later in this clause.)

The DefaultMinMax table defines the default min/max extent values for the script. (For details, see the MinMax
table description below.) If a language system or feature defined in the font has no effect on the script's
default min/max extents, the OFF Layout Services will use the default script values.

Sometimes language-specific overrides for min/max extents are needed to properly render the glyphs in a
specific language system. For example, a glyph substitution required in a language system may result in a
glyph whose extents exceed the script's default min/max extents. Each language system that specifies
min/max extent values must define a BaseLangSysRecord. The record should identify the language system
(BaseLangSysTag) and contain an Offset to a MinMax table of language-specific extent coordinates.

Feature-specific overrides for min/max extents also may be needed to accommodate the effects of glyph
actions used to implement a specific feature. For example, superscript or subscript features may require
changes to the default script or language system extents. Feature-specific extent values not limited to a
specific language system may be specified in the DefaultMinMax table. However, extent values used for a
specific language system require a BaseLangSysRecord and a MinMax table. In addition to specifying
coordinate data, the MinMax table must contain Offsets to FeatMinMaxRecords that define the feature-specific
min/max data.

A BaseScript table has four components:

• An Offset to a BaseValues table (BaseValues). If no baseline data is defined for the script or the
corresponding BaseTagList is set to NULL, the Offset to the BaseValues table may be set to NULL.

• An Offset to the DefaultMinMax table. If no default min/max extent data is defined for the script, this
Offset may be set to NULL.

• An array of BaseLangSysRecords (BaseLangSysRecord). The individual records stored in the
BaseLangSysRecord array are listed alphabetically by BaseLangSysTag.

• A count of the BaseLangSysRecords included (BaseLangSysCount). If no language system or
language-specific feature min/max values are defined, the BaseLangSysCount may be set to zero (0).

Example 2 at the end of this clause shows a sample BaseScript table.

BaseScript Table

Type Name Description

Offset BaseValues Offset to BaseValues table-from beginning of BaseScript table-may be NULL

Offset DefaultMinMax Offset to MinMax table- from beginning of BaseScript table-may be NULL

uint16 BaseLangSysCount Number of BaseLangSysRecords defined-may be zero (0)

struct BaseLangSysRecord
[BaseLangSysCount]

Array of BaseLangSysRecords-in alphabetical order by BaseLangSysTag

BaseLangSysRecord

A BaseLangSysRecord defines min/max extents for a language system or a language-specific feature. Each
record contains an identification tag for the language system (BaseLangSysTag) and an Offset to a MinMax
table (MinMax) that defines extent coordinate values for the language system and references feature-specific
extent data.

ISO/IEC FDIS 14496-22:2006(E)

128 © ISO/IEC 2006 — All rights reserved

Example 2 at the end of this clause shows a BaseLangSysRecord.

BaseLangSysRecord

Type Name Description

Tag BaseLangSysTag 4-byte language system identification tag

Offset MinMax Offset to MinMax table-from beginning of BaseScript table

BaseValues Table

A BaseValues table lists the coordinate positions of all baselines named in the BaselineTag array of the
corresponding BaseTagList and identifies a default baseline for a script.
NOTE When the Offset to the corresponding BaseTagList is NULL, a BaseValues table is not needed. However, if
the Offset is not NULL, then each script must specify coordinate positions for all baselines named in the BaseTagList.

The default baseline, one per script, is the baseline used to lay out and align the glyphs in the script. The
DefaultIndex in the BaseValues table identifies the default baseline with a value that equals the array index
position of the corresponding tag in the BaselineTag array.

For example, the Han and Latin scripts use different baselines to align text. If a font supports both of these
scripts, the BaselineTag array in the BaseTagList of the HorizAxis table will contain two tags, listed
alphabetically: "ideo" in BaselineTag[0] for the Han ideographic baseline, and "romn" in BaselineTag[1] for the
Latin baseline. The BaseValues table for the Latin script will specify the roman baseline as the default, so the
DefaultIndex in the BaseValues table for Latin will be "1" to indicate the roman baseline tag. In the
BaseValues table for the Han script, the DefaultIndex will be "0" to indicate the ideographic baseline tag.

Two or more scripts may share a default baseline. For instance, if the font described above also supports the
Cyrillic script, the BaselineTag array does not need a baseline tag for Cyrillic because Cyrillic and Latin share
the same baseline. The DefaultIndex defined in the BaseValues table for the Cyrillic script will specify "1" to
indicate the roman baseline tag, listed in the second position in the BaselineTag array.

In addition to identifying the DefaultIndex, the BaseValues table contains an Offset to an array of BaseCoord
tables (BaseCoord) that list the coordinate positions for all baselines, including the default baseline, named in
the associated BaselineTag array. One BaseCoord table is defined for each baseline. The BaseCoordCount
defines the total number of BaseCoord tables, which must equal the number of baseline tags listed in
BaseTagCount in the BaseTagList.

Each baseline coordinate is defined as a single X or Y value in design units measured from the zero position
on the relevant X or Y axis. For example, a BaseCoord table defined in the HorizAxis table will contain a Y
value because horizontal baselines are positioned vertically. BaseCoord values may be negative. Each script
may assign a different coordinate to each baseline.

Offsets to each BaseCoord table are stored in a BaseCoord array within the BaseValues table. The order of
the stored Offsets corresponds to the order of the tags listed in the BaselineTag array of the BaseTagList. In
other words, the first position in the BaseCoord array will define the Offset to the BaseCoord table for the first
baseline named in the BaselineTag array, the second position will define the Offset to the BaseCoord table for
the second baseline named in the BaselineTag array, and so on.

Example 3 at the end of the clause has two parts, one that shows a BaseValues table and one that shows a
chart with different baseline positions defined for several scripts.

BaseValues table

Type Name Description

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 129

uint16 DefaultIndex Index number of default baseline for this script-equals index position of
baseline tag in BaselineArray of the BaseTagList

uint16 BaseCoordCount Number of BaseCoord tables defined-should equal BaseTagCount in the
BaseTagList

Offset BaseCoord[BaseCoordCount] Array of Offsets to BaseCoord-from beginning of BaseValues table-order
matches BaselineTag array in the BaseTagList

The MinMax Table and FeatMinMaxRecord

The MinMax table specifies extents for scripts and language systems. It also contains an array of
FeatMinMaxRecords used to define feature-specific extents.

Both the MinMax table and the FeatMinMaxRecord define Offsets to two BaseCoord tables: one that defines
the mimimum extent value (MinCoord), and one that defines the maximum extent value (MaxCoord). Each
extent value is a single X or Y value, depending upon the text direction, and is specified in design units.
Coordinate values may be negative.

Different tables define the min/max extent values for scripts, language systems, and features:

• Min/max extent values for a script are defined in the DefaultMinMax table, referenced in a BaseScript
table.

• Within the DefaultMinMax table, FeatMinMaxRecords can specify extent values for features that apply
to the entire script.

• Min/max extent values for a language system are defined in the MinMax table, referenced in a
BaseLangSysRecord.

• FeatMinMaxRecords can be defined within the MinMax table to specify extent values for features
applied within a language system.

In a FeatMinMaxRecord, the MinCoord and MaxCoord tables specify the minimum and maximum coordinate
values for the feature, and a FeatureTableTag defines a 4-byte feature identification tag. The
FeatureTableTag must match the tag used to identify the feature in the FeatureList of the GSUB or GPOS
table.

Each feature that exceeds the default min/max values requires a FeatMinMaxRecord. All FeatMinMaxRecords
are listed alphabetically by FeatureTableTag in an array (FeatMinMaxRecord) within the MinMax table.
FeatMinMaxCount defines the total number of FeatMinMaxRecords.

Text-processing clients should use the following procedure to access the script, language system, and
feature-specific extent data:

1. Determine script extents in relation to the text content.

2. Select language-specific extent values with respect to the language system in use.

3. Have the application or user choose feature-specific extent values.

4. If no extent values are defined for a language system or for language-specific features, use the
default min/max extent values for the script.

Example 4 at the end of this clause has two parts. One shows MinMax tables and a FeatMinMaxRecord for
different script, language system, and feature extents. The second part shows how to define these tables
when a language system needs feature-specific extent values for an obscure feature, but otherwise the
language system and script extent values match.

ISO/IEC FDIS 14496-22:2006(E)

130 © ISO/IEC 2006 — All rights reserved

MinMax table

Type Name Description

Offset MinCoord Offset to BaseCoord table-defines minimum extent value-from the beginning of
MinMax table-may be NULL

Offset MaxCoord Offset to BaseCoord table-defines maximum extent value-from the beginning of
MinMax table-may be NULL

uint16 FeatMinMaxCount Number of FeatMinMaxRecords-may be zero (0)

struct FeatMinMaxRecord
[FeatMinMaxCount]

Array of FeatMinMaxRecords-in alphabetical order, by FeatureTableTag

FeatMinMaxRecord

Type Name Description

Tag FeatureTableTag 4-byte feature identification tag-must match FeatureTag in FeatureList

Offset MinCoord Offset to BaseCoord table-defines minimum extent value-from beginning of MinMax
table-may be NULL

Offset MaxCoord Offset to BaseCoord table-defines maximum extent value-from beginning of MinMax
table-may be NULL

BaseCoord Tables

Within the BASE table, a BaseCoord table defines baseline and min/max extent values. Each BaseCoord
table defines one X or Y value:

• If defined within the HorizAxis table, then the BaseCoord table contains a Y value.

• If defined within the VertAxis table, then the BaseCoord table contains an X value.

All values are defined in design units, which typically are scaled and rounded to the nearest integer when
scaling the glyphs. Values may be negative.

Three formats available for BaseCoord table data define single X or Y coordinate values in design units. Two
of the formats also support fine adjustments to the X or Y values based on a contour point or a Device table.

BaseCoord Format 1

The first BaseCoord format (BaseCoordFormat1) consists of a format identifier, followed by a single design
unit coordinate that specifies the BaseCoord value. This format has the benefits of small size and simplicity,
but the BaseCoord value cannot be hinted for fine adjustments at different sizes or device resolutions.

Example 5 at the end of the clause shows a sample of a BaseCoordFormat1 table.

BaseCoordFormat1 table: Design units only

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 131

Type Name Description

uint16 BaseCoordFormat Format identifier-format = 1

int16 Coordinate X or Y value, in design units

BaseCoord Format 2

The second BaseCoord format (BaseCoordFormat2) specifies the BaseCoord value in design units, but also
supplies a glyph index and a contour point for reference. During font hinting, the contour point on the glyph
outline may move. The point's final position after hinting provides the final value for rendering a given font size.
NOTE Glyph positioning operations defined in the GPOS table do not affect the point's final position.

Example 6 shows a sample of a BaseCoordFormat2 table.

BaseCoordFormat2 table: Design units plus contour point

Type Name Description

uint16 BaseCoordFormat Format identifier-format = 2

int16 Coordinate X or Y value, in design units

GlyphID ReferenceGlyph GlyphID of control glyph

uint16 BaseCoordPoint Index of contour point on the ReferenceGlyph

BaseCoord Format 3

The third BaseCoord format (BaseCoordFormat3) also specifies the BaseCoord value in design units, but it
uses a Device table rather than a contour point to adjust the value. This format offers the advantage of fine-
tuning the BaseCoord value for any font size and device resolution. (For more information about Device tables,
see the clause, Common Table Formats.)

Example 7 at the end of this clause shows a sample of a BaseCoordFormat3 table.

BaseCoordFormat3 table: Design units plus Device table

Type Name Description

uint16 BaseCoordFormat Format identifier-format = 3

int16 Coordinate X or Y value, in design units

Offset DeviceTable Offset to Device table for X or Y value

ISO/IEC FDIS 14496-22:2006(E)

132 © ISO/IEC 2006 — All rights reserved

5.3.1.3 Base Table Examples

BASE Table Examples

The rest of this clause describes and illustrates examples of all the BASE tables. All the examples reflect
unique parameters described below, but the samples provide a useful reference for building tables specific to
other situations.

Most of the examples have three columns showing hex data, source, and comments.

Example 1: BASE Header Table, Axis Table, BaseTagList Table, BaseScriptList Table, and
BaseScriptRecord

Example 1 describes a sample font that contains four scripts: Cyrillic, Devanagari, Han, and Latin. All four
scripts are rendered horizontally; only one script, Han, is rendered vertically. As a result, the BASE header
gives Offsets to two Axis tables: HorizAxis and VertAxis. Example 1 only shows data defined in the HorizAxis
table.

In the HorizAxis table, the BaseScriptList enumerates all four scripts. The BaseTagList table names three
horizontal baselines for rendering these scripts: hanging, ideographic, and roman. The hanging baseline is the
default for Devanagari, the ideographic baseline is the default for Han, and the roman baseline is the default
for both Latin and Cyrillic.

The VertAxis table (not shown) would be defined similarly: its BaseScriptList would enumerate one script, Han,
and its BaseTagList would specify the vertically centered baseline for rendering the Han script.

Example 1

Hex Data Source Comments

 BASEHeader
TheBASEHeader BASE table header definition

00010000 0x00010000 Version

0008 HorizontalAxisTable Offset to HorizAxis table

010C VerticalAxisTable Offset to VertAxis table

 Axis
HorizontalAxisTable Axis table definition

0004 HorizBaseTagList Offset to BaseTagList table

0012 HorizBaseScriptList Offset to BaseScriptList table

 BaseTagList
HorizBaseTagList BaseTagList table definition

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 133

0003 3 BaseTagCount

68616E67 "hang" BaselineTag[0], in alphabetical order

6964656F "ideo" BaselineTag[1]

726F6D6E "romn" BaselineTag[2]

 BaseScriptList
HorizBaseScriptList BaseScriptList table definition

0004 4 BaseScriptCount
BaseScriptRecord[0], in alphabetical order

6379726C "cyrl" BaseScriptTag for Cyrillic script

001A HorizCyrillicBaseScriptTable Offset to BaseScript table for Cyrillic script BaseScriptRecord[1]

6465766E "devn" BaseScriptTag for Devanagari script

0060 HorizDevanagariBaseScriptTable Offset to BaseScript table for Devanagari script
BaseScriptRecord[2]

68616E69 "hani" BaseScriptTag for Han script

008A HorizHanBaseScriptTable Offset to BaseScript table for Han script BaseScriptRecord[3]

6C61746E "latn" BaseScriptTag for Latin script

00B4 HorizLatinBaseScriptTable Offset to BaseScript table for Latin script

Example 2: BaseScript Table and BaseLangSysRecord

Example 2 shows the BaseScript table and BaseLangSysRecord for the Cyrillic script, one of the four scripts
included in the sample font described in Example 1. The BaseScript table specifies Offsets to tables that
contain the baseline and min/max extent data for Cyrillic. (The BaseScript tables for the other three scripts in
the font would be defined similarly.) Again, the table specifies only the horizontal text-layout information.

The HorizCyrillicBaseValues table contains the baseline information for the script, and the
HorizCyrillicDefaultMinMax table contains the default script extents. In addition, a BaseLangSysRecord
defines min/max extent data for the Russian language system.

Example 2

Hex Data Source Comments

 BaseScript
HorizCyrillicBaseScriptTable BaseScript table definition for Cyrillic script

ISO/IEC FDIS 14496-22:2006(E)

134 © ISO/IEC 2006 — All rights reserved

000C HorizCyrillicBaseValuesTable Offset to BaseValues table

0022 HorizCyrillicDefault
MinMaxTable

Offset to DefaultMinMax table default script extents

0001 1 BaseLangSysCount, feature-specific extents BaseLangSysRecord[0] in
alphabetical order

52555320 "RUS " BaseLangSysTag, Russian language system

0030 HorizRussianMinMaxTable Offset to MinMax table feature-specific extents

Example 3: BaseValues Table

Example 3 extends the BASE table definition for the Cyrillic script described in Examples 1 and 2. It contains
two parts:

• Example 3A illustrates a fully defined BaseValues table for Cyrillic. The table includes the
corresponding BaseCoord table definitions.

• Example 3B shows two different sets of baseline values that can be defined for each of the four
scripts in the sample font.

The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.

Example 3A: BaseValues Table for Cyrillic

The BaseValues table of Example 3A identifies the default baseline for Cyrillic and specifies coordinate
positions for each baseline listed in the BaseTagList shown in Example 1:

• The hanging baseline is the default for the Devanagari script, and it has the highest baseline position.

• The ideographic baseline is the default for the Han script, and it has the lowest baseline position.

• The roman baseline is the default for both the Latin and Cyrillic scripts, and its position lies between
the hanging and ideographic baselines.

Example 3A

Hex
Data

Source Comments

 BaseValues
HorizCyrillicBaseValuesTable BaseValues table definition for Cyrillic script

0002 2 DefaultIndex, roman baseline BaselineTag index

0003 3 BaseCoordCount, equals BaseTagCount

000A HorizHangingBaseCoordForCyrl Offset to BaseCoord[0] table hanging baseline coordinate, order
matches order of BaselineTag array in BaseTagList

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 135

000E HorizideographicBaseCoordForCyrl Offset to BaseCoord[1] table ideographic baseline coordinate

0012 HorizromanBaseCoordForCyrl Offset to BaseCoord[2] table roman baseline coordinate

 BaseCoordFormat1
HorizHangingBaseCoordForCyrl BaseCoord table definition

0001 1 BaseCoordFormat design units only

05DC 1500 Coordinate Y value, in design units

 BaseCoordFormat1
HorizideographicBaseCoordForCyrl BaseCoord table definition

0001 1 BaseCoordFormat design units only

FEE0 -288 Coordinate Y value, in design units

 BaseCoordFormat1
HorizromanBaseCoordinateForCyrl BaseCoord table definition

0001 1 BaseCoordFormat, design units only

0000 0 Coordinate, Y value, in design units

Example 3B: Baseline Values for Four Scripts

Example 3B shows two tables that contain baseline values for each of the four scripts in the sample font
described in Example 1:

• The first table shows what might happen if the baseline values in all four scripts are designed
consistently. Their respective BaseValues tables list identical baseline values with the roman baseline
positioned at a Y value of zero (0), the ideographic baseline at 1500, and the hanging baseline at -288.

• The second table shows what might happen if the baseline values in the scripts are designed
differently with the default baseline for each script at the zero (0) coordinate.

Either method of assigning baseline values can be used in the BASE table.

Example 3B: Identical baseline values

Baseline type Han Latin Cyrillic Devanagari

hanging 1500 1500 1500 1500

ISO/IEC FDIS 14496-22:2006(E)

136 © ISO/IEC 2006 — All rights reserved

roman 0 0 0 0

ideographic -288 -288 -288 -288

Example 3B: Assigned baseline values with default baselines at 0

Baseline type Han Latin Cyrillic Devanagari

hanging 1788 1500 1500 0

roman 288 0 0 -1500

ideographic 0 -288 -288 -1788

Example 4: MinMax Table and FeatMinMaxRecord

Example 4 shows MinMax table and FeatMinMaxRecord definitions for the same Cyrillic script described in
the previous example. It contains two parts:

• Example 4A defines tables with different script, language system, and feature extents.

• Example 4B shows these same table definitions written when the language system extents match the
script extents, but an obscure feature of the language system requires feature-specific extents if that
feature is implemented.

The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.

Example 4A: Min/Max Extents For Cyrillic Script, Russian Language, and Russian Feature

Example 4A shows two MinMax tables and a FeatMinMaxRecord for the Cyrillic script, along with sample
BaseCoord tables. Only the MinCoord extent data is included.

The DefaultMinMax table defines the default minimum and maximum extents for the Cyrillic script. Another
MinMax table defines language-specific min/max extents for the Russian language system to accommodate
the height and width of certain glyphs used in Russian. Also, a FeatMinMaxRecord defines min/max extents
for a single feature in the Russian language system that substitutes a tall integral math symbol when required.

Example 4A

Hex Data Source Comments

 MinMax
HorizCyrillicDefault
MinMaxTable DefaultMinMax table definition, Cyrillic script

0006 HorizCyrillic
MinCoordTable

MinCoord Offset to BaseCoord table

000A HorizCyrillic
MaxCoordTable

MaxCoord Offset to BaseCoord table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 137

0000 0 FeatMinMaxCount no default feature extents
FeatMinMaxRecord[], no FeatMinMaxRecords

 BaseCoordFormat1
HorizCyrillic
MinCoordTable BaseCoord table definition, default Cyrillic Min extent coordinate

0001 1 BaseCoordFormat, design units only

FF38 -200 Coordinate Y value, in design units

 BaseCoordFormat1
HorizCyrillic
MaxCoordTable BaseCoord table definition default Cyrillic Max extent coordinate

0001 1 BaseCoordFormat, design units only

0674 1652 Coordinate Y value, in design units

 MinMax
HorizRussianMinMaxTable MinMax table definition Russian language extents

000E HorizRussianLangSys
MinCoordTable

MinCoord Offset to BaseCoord table

0012 HorizRussianLangSys
MaxCoordTable

MaxCoord Offset to BaseCoord table

0001 1 FeatMinMaxCount
FeatMinMaxRecord[0] in alphabetical order

696E7467 "intg" FeatureTableTag integral math symbol Feature must be same as Tag in
FeatureList

0016 HorizRussianFeature
MinCoordTable

MinCoord Offset to BaseCoord table

001A HorizRussianFeature
MaxCoordTable

MaxCoord Offset to BaseCoord table

 BaseCoordFormat1
HorizRussianLangSys
MinCoordTable BaseCoord table definition Russian language min extent coordinate

ISO/IEC FDIS 14496-22:2006(E)

138 © ISO/IEC 2006 — All rights reserved

0001 1 BaseCoordFormat design units only

FF08 -248 Coordinate Y value, in design units, increased Min extent beyond default
Cyrillic min extent

 BaseCoordFormat1
HorizRussianLangSys
MaxCoordTable

BaseCoord table definition Russian language feature Max extent
coordinate

0001 1 BaseCoordFormat design units only

06A4 1700 Coordinate Y value, in design units increased max extent beyond default
Cyrillic max extent

 BaseCoordFormat1
HorizRussianFeature
MinCoordTable BaseCoord table definition Russian language Min extent coordinate

0001 1 BaseCoordFormat Design Units Only

FED8 -296 Coordinate Y value, in design units, increased Min extent beyond default
Cyrillic script and Russian language min extents

 BaseCoordFormat1
HorizRussianFeature
MaxCoordTable

BaseCoord table definition Russian language feature Max extent
coordinate

0001 1 BaseCoordFormat design units only

06D8 1752 Coordinate Y value, in design units increased Max extent beyond default
Cyrillic script and Russian language max extents

Example 4B: Min/Max Extents For Cyrillic Script and Russian Feature

A particular language system does not need to define min/max extent coordinates if its extents match the
default extents defined for the script. However, an obscure or infrequently used feature within the language
system may require feature-specific extent values for proper rendering.

Example 4B shows the MinMax and FeatMinMaxRecord table definitions for this situation. The example also
includes a BaseScript table, but not a BaseValues tables since it is not relevant in this example. The example
shows horizontal text layout extents for the Cyrillic script and feature-specific extents for one feature in the
Russian language system. Much of the data is repeated from Example 4A and modified here for comparison.

The BaseScript table includes a DefaultMinMax table for the Cyrillic script and a BaseLangSysRecord that
defines a BaseLangSysTag and an Offset to a MinMax table for the Russian language. The MinMax table
includes a FeatMinMaxRecord and specifies a FeatMinMaxCount, but both the MinCoord and MaxCoord
Offsets in the MinMax table are set to NULL since no language-specific extent values are defined for Russian.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 139

The FeatMinMaxRecord defines the min/max coordinates for the Russian feature and specifies the correct
FeatureTableTag.

Example 4B

Hex Data Source Comments

 BaseScript
HorizCyrillicBaseScriptTable BaseScript table definition Cyrillic script

0000 NULL Offset to BaseValues table

000C HorizCyrillicDefault
MinMaxTable

Offset to DefaultMinMax table for default script extents

0001 1 BaseLangSysCount
BaseLangSysRecord[0] for Russian feature-specific-extents

52555320 "RUS " BaseLangSysTag = Russian

001A HorizRussian
MinMaxTable

Offset to MinMax table for feature-specific extents

 MinMax
HorizCyrillicDefault
MinMaxTable DefaultMinMax table definition Cyrillic script

0006 HorizCyrillic
MinCoordTable

MinCoord Offset to BaseCoord table

000A HorizCyrillic
MaxCoordTable

MaxCoord Offset to BaseCoord table

0000 0 FeatMinMaxCount, no default feature extents
FeatMinMaxRecord[], no FeatMinMaxRecords

 BaseCoordFormat1
HorizCyrillic
MinCoordTable

BaseCoord table definition default Cyrillic Min extent coordinate

0001 1 BaseCoordFormat design units only

FF38 -200 Coordinate Y value, in design units

 BaseCoordFormat1
HorizCyrillic
MaxCoordTable BaseCoord table definition default Cyrillic Min extent coordinate

ISO/IEC FDIS 14496-22:2006(E)

140 © ISO/IEC 2006 — All rights reserved

0001 1 BaseCoordFormat design units only

0674 1652 Coordinate Y value, in design units

 MinMax
HorizRussian
MinMaxTable

MinMax table definition for Russian feature no extent differences for
Russian language itself

0000 NULL Offset to Min BaseCoord table not defined, matches default

0000 NULL Offset to Max BaseCoord table not defined, matches default

0001 1 FeatMinMaxCount, FeatMinMaxRecord[0] in alphabetical order

696E7467 "intg" FeatureTableTag integral math sign Feature must be same as Tag in
FeatureList

000E HorizRussianFeature
MinCoordTable

MinCoord Offset to BaseCoord table

0012 HorizRussianFeature
MaxCoordTable

MaxCoord Offset to BaseCoord table

 BaseCoordFormat1
HorizRussianFeature
MinCoordTable BaseCoord table definition Russian Feature Min extent coordinate

0001 1 BaseCoordFormat, design units only

FED8 -296 Coordinate Y value, in design units increased Min extent beyond default
Cyrillic Min extent

 BaseCoordFormat1
HorizRussianFeature
MaxCoordTable BaseCoord table definition, Russian feature Max extent coordinate

0001 1 BaseCoordFormat design units only

06D8 1752 Coordinate Y value, in design units, increased Max extent beyond
default Cyrillic Max extent

Example 5: BaseCoordFormat1 Table

Example 5 illustrates BaseCoordFormat1, which specifies single coordinate values in design units only. The
font uses 2,048 design units/em. The example defines the default minimum extent coordinate for a math script.

Example 5

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 141

Hex Data Source Comments

 BaseCoordFormat1
HorizMathMinCoordTable Definition of BaseCoord table for Math Min coordinate

0001 1 BaseCoordFormat, design units only

FEE8 -280 Coordinate Y value, in design units

Example 6: BaseCoordFormat2 Table

Example 6 illustrates the BaseCoord Format 2. Like Example 5, it specifies the minimum extent coordinate for
a math script. With this format, the coordinate value depends on the final position of a specific contour point
on one glyph, the integral math symbol, after hinting. Again, the value is in design units (2,048 units/em).

Example 6

Hex Data Source Comments

 BaseCoordFormat2
HorizMathMinCoordTable BaseCoord table definition for Math Min coordinate

0002 2 BaseCoordFormat design units plus contour point

FEE8 -280 Coordinate Y value, in design units

0128 IntegralSignGlyphID ReferenceGlyph math integral sign

0043 67 BaseCoordPoint glyph contour point index

Example 7: BaseCoordFormat3 Table

Example 7 illustrates the BaseCoord Format 3. Like Examples 5 and 6, it specifies the minimum extent
coordinate for a math script in design units (2,048 units/em). This format, however, uses a Device table to
modify the coordinate value for the point size and resolution of the output font. Here, the Device table defines
pixel adjustments for font sizes from 11 ppem to 15 ppem. The adjustments add one pixel at each size.

Example 7

Hex Data Source Comments

 BaseCoordFormat3
HorizMathMinCoordTable BaseCoord table definition for Math Min coordinate

0003 3 BaseCoordFormat design units plus device table

 -280 Coordinate Y value, in design units

ISO/IEC FDIS 14496-22:2006(E)

142 © ISO/IEC 2006 — All rights reserved

000C HorizMathMin
CoordDeviceTable

Offset to Device table

 DeviceTableFormat1
HorizMathMin
CoordDeviceTable Device table definition for MinCoord

000B 11 StartSize -11 ppem

000F 15 EndSize -15 ppem

0001 1 DeltaFormat signed 2 bit value, 8 values per uint16

 1 Increase 11ppem by 1 pixel

 1 Increase 12ppem by 1 pixel

 1 Increase 13ppem by 1 pixel

 1 Increase 14ppem by 1 pixel

5540 1 Increase 15ppem by 1 pixel

5.3.2 GDEF – The Glyph Definition Table

The Glyph Definition (GDEF) table contains four types of information in four independent tables:

• The GlyphClassDef table classifies the different types of glyphs in the font.

• The AttachmentList table identifies all attachment points on the glyphs, which streamlines data access
and bitmap caching.

• The LigatureCaretList table contains positioning data for ligature carets, which the text-processing
client uses on screen to select and highlight the individual components of a ligature glyph.

• The MarkAttachClassDef table classifies mark glyphs, to help group together marks that are
positioned similarly.

Both the GSUB and GPOS tables reference the GDEF table information to supplement their own data for
substituting and positioning glyphs. Even so, a GDEF table is optional for a font, included at the discretion of
the font developer. Without a GDEF table, however, the text-processing client may have to define and
maintain the GDEF information on its own when substituting and positioning glyphs.

5.3.2.1 Overview

A client may use any one or more of the four GDEF tables during text processing. This overview explains how
each of the four tables are organized and used (See Figure 22). The rest of this clause describes the
individual GDEF tables and the tables that they reference.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 143

Figure 22 – High-level organization of GDEF table

5.3.2.2 GDEF Table Structure

The Glyph Class Definition (GlyphClassDef) table identifies four types of glyphs in a font: base glyphs, ligature
glyphs, combining mark glyphs, and component glyphs (see Figure 23). GSUB and GPOS lookups define and
use these glyph classes to differentiate the types of glyphs in a string. For example, GPOS uses the glyph
classes to distinguish between a simple base glyph and the mark glyph that follows it.

Figure 23 – A base glyph, ligature glyph, mark glyph, and component glyphs

In addition, a client uses class definitions to apply GSUB and GPOS LookupFlag data correctly. For example,
a LookupFlag may specify ignoring ligatures and marks during a glyph operation. If the font does not include a
GlyphClassDef table, the client must define and maintain this information when using the GSUB and GPOS
tables.

Attachment Point List Table

The Attachment Point List table (AttachmentList) identifies all the attachment points defined in the GPOS table
and their associated glyphs so a client can quickly access coordinates for each glyph's attachment points. As
a result, the client can cache coordinates for attachment points along with glyph bitmaps and avoid
recalculating the attachment points each time it displays a glyph. Without this table, processing speed would
be slower because the client would have to decode the GPOS lookups that define attachment points and
compile the points in a list.

Ligature Caret List Table

The Ligature Caret List table (LigatureCaretList), particularly useful in Arabic and other scripts with many
ligatures, specifies coordinates for positioning carets on all ligatures in a font. The client uses this data to
select and highlight ligature components in displayed text (see Figure 24).

Figure 24 – Proper ligature caret postioning

ISO/IEC FDIS 14496-22:2006(E)

144 © ISO/IEC 2006 — All rights reserved

Each ligature can have more than one caret position, with each position defined as an X or Y value on the
baseline according to the writing direction of the script or language system. The font developer can use any of
three formats to represent a caret coordinate value. One format represents values in design units only,
another fine-tunes a value based on a designated contour point, and the third uses a Device table to adjust
values at specific font sizes.

Without a Ligature Caret List table, the client would have to define caret positions without knowing the
positions of the ligature components. The resulting highlighting or hit-testing might be ambiguous. For
example, suppose a client places a caret at the midpoint position along the width of a hyphothetical "wi"
ligature. Because the "w" is wider than the "i," that position would not clearly indicate which component is
selected. Instead, for accurate selection, the caret should be moved to the right so that either the "w" or "i"
could be clearly highlighted.

GDEF Header

The GDEF table begins with a header that consists of a version number (Version), initially set to 0x00010000,
an Offset to a table defining the types of glyphs in the font (GlyphClassDef), an Offset to a list defining
attachment points on the glyphs(AttachList), an Offset to a ligature caret list (LigCaretList) and an Offset to a
list defining types of marks that can be attached (MarkAttachClassDef). The format used for the
MarkAttachClassDef is the same as that for GlyphClassDef. Please refer the 'LookupFlag bit enumeration'
subclause 5.2in the Common Table Formats for more on using lookup flags with the information in these fields.

Example 1 at the end of this clause shows a GDEF Header table.

Type Name Description

Fixed Version Version of the GDEF table-initially 0x00010000

Offset GlyphClassDef Offset to class definition table for glyph type-from beginning of GDEF header (may
be NULL)

Offset AttachList Offset to list of glyphs with attachment points-from beginning of GDEF header (may
be NULL)

Offset LigCaretList Offset to list of positioning points for ligature carets-from beginning of GDEF header
(may be NULL)

Offset MarkAttachClassDef Offset to class definition table for mark attachment type-from beginning of GDEF
header (may be NULL)

Glyph Class Definition Table

The GSUB and GPOS tables use the Glyph Class Definition table (GlyphClassDef) to identify which glyph
classes to adjust with lookups.

The table uses the same format as the Class Definition table (for details, see subclause 5.2, Common Table
Formats). However, the GlyphClassDef table uses class values already defined in the GlyphClassDef
Enumeration list:

GlyphClassDef Enumeration List

Class Description

1 Base glyph (single character, spacing glyph)

2 Ligature glyph (multiple character, spacing glyph)

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 145

3 Mark glyph (non-spacing combining glyph)

4 Component glyph (part of single character, spacing glyph)

The font developer does not have to classify every glyph in the font, but any glyph not assigned a class value
falls into Class zero (0). For instance, class values might be useful for the Arabic glyphs in a font, but not for
the Latin glyphs. Then the GlyphClassDef table will list only Arabic glyphs, and-by default-the Latin glyphs will
be assigned to Class 0. Component glyphs can be put together to generate ligatures. A ligature can be
generated by creating a glyph in the font that references the component glyphs, or outputting the component
glyphs in the desired sequence. Component glyphs are not used in defining any GSUB or GPOS formats.

Example 2 at the end of this clause defines a GlyphClassDef table with a sample glyph for each of the
assigned classes.

Attachment List Table

The Attachment List table (AttachList) may be used to cache attachment point coordinates along with glyph
bitmaps.

The table consists of an Offset to a Coverage table (Coverage) listing all glyphs that define attachment points
in the GPOS table, a count of the glyphs with attachment points (GlyphCount), and an array of Offsets to
AttachPoint tables (AttachPoint). The array lists the AttachPoint tables, one for each glyph in the Coverage
table, in the same order as the Coverage Index.

AttachList table

Type Name Description

Offset Coverage Offset to Coverage table - from beginning of AttachList table

uint16 GlyphCount Number of glyphs with attachment points

Offset AttachPoint[GlyphCount] Array of Offsets to AttachPoint tables-from beginning of AttachList table-in
Coverage Index order

An AttachPoint table consists of a count of the attachment points on a single glyph (PointCount) and an array
of contour indices of those points (PointIndex), listed in increasing numerical order.

Example 3 at the end of the clause demonstrates an AttachList table that defines attachment points for two
glyphs.

AttachPoint table

Type Name Description

uint16 PointCount Number of attachment points on this glyph

uint16 PointIndex[PointCount] Array of contour point indices -in increasing numerical order

Ligature Caret List Table

The Ligature Caret List table (LigCaretList) defines caret positions for all the ligatures in a font. The table
consists of an Offset to a Coverage table that lists all the ligature glyphs (Coverage), a count of the defined
ligatures (LigGlyphCount), and an array of Offsets to LigGlyph tables (LigGlyph). The array lists the LigGlyph
tables, one for each ligature in the Coverage table, in the same order as the Coverage Index.

ISO/IEC FDIS 14496-22:2006(E)

146 © ISO/IEC 2006 — All rights reserved

Example 4 at the end of this clause shows a LigCaretList table.

LigCaretList table

Type Name Description

Offset Coverage Offset to Coverage table - from beginning of LigCaretList table

uint16 LigGlyphCount Number of ligature glyphs

Offset LigGlyph[LigGlyphCount] Array of Offsets to LigGlyph tables-from beginning of LigCaretList table-in
Coverage Index order

Ligature Glyph Table

A Ligature Glyph table (LigGlyph) contains the caret coordinates for a single ligature glyph. The number of
coordinate values, each defined in a separate CaretValue table, equals the number of components in the
ligature minus one (1).

The LigGlyph table consists of a count of the number of CaretValue tables defined for the ligature
(CaretCount) and an array of Offsets to CaretValue tables (CaretValue).

Example 4 at the end of the clause shows a LigGlyph table.

LigGlyph table

Type Name Description

uint16 CaretCount Number of CaretValues for this ligature (components - 1)

Offset CaretValue[CaretCount] Array of Offsets to CaretValue tables-from beginning of LigGlyph table-in
increasing coordinate order

Caret Values Table

A Caret Values table (CaretValues), which defines caret positions for a ligature, can be any of three possible
formats. One format uses design units to define the caret position. The other two formats use a contour point
or Device table to fine-tune a caret's position at specific font sizes and device resolutions. Caret coordinates
are either X or Y values, depending upon the text direction.

CaretValue Format 1

The first format (CaretValueFormat1) consists of a format identifier (CaretValueFormat), followed by a single
coordinate for the caret position (Coordinate). The Coordinate is in design units.

This format has the benefits of small size and simplicity, but the Coordinate value cannot be hinted for fine
adjustments at different device resolutions.

Exampel 4 at the end of this clause shows a CaretValueFormat1 table.

CaretValueFormat1 table: Design units only

Type Name Description

uint16 CaretValueFormat Format identifier-format = 1

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 147

int16 Coordinate X or Y value, in design units

CaretValue Format 2

The second format (CaretValueFormat2) specifies the caret coordinate in terms of a contour point index on a
specific glyph. During font hinting, the contour point on the glyph outline may move. The point's final position
after hinting provides the final value for rendering a given font size.

The table contains a format identifier (CaretValueFormat) and a contour point index (CaretValuePoint).

Example 5 at the end of this clause demonstrates a CaretValueFormat2 table.

CaretValueFormat2 table: Contour point

Type Name Description

uint16 CaretValueFormat Format identifier-format = 2

uint16 CaretValuePoint Contour point index on glyph

CaretValue Format 3

The third format (CaretValueFormat3) also specifies the value in design units, but it uses a Device table rather
than a contour point to adjust the value. This format offers the advantage of fine-tuning the Coordinate value
for any device resolution. (For more information about Device tables, see the clause, Common Table
Formats.)

The format consists of a format identifier (CaretValueFormat), an X or Y value (Coordinate), and an Offset to a
Device table (DeviceTable).

Example 6 at the end of this clause shows a CaretValueFormat3 table.

CaretValueFormat3 table: Design units plus Device table

Type Name Description

uint16 CaretValueFormat Format identifier-format = 3

int16 Coordinate X or Y value, in design units

Offset DeviceTable Offset to Device table for X or Y value-from beginning of CaretValue table

Mark Attachment Class Definition Table

A Mark Attachment Class Definition Table defines the class to which a mark glyph may belong. This table
uses the same format as the Class Definition table (for details, see subclause 5.2, Common Table Formats).

Example 7 in this document shows a MarkAttachClassDef table.

5.3.2.3 GDEF Table Examples

The rest of this clause describes examples of all the GDEF table formats. All the examples reflect unique
parameters described below, but the samples provide a useful reference for building tables specific to other
situations.

The examples have three columns showing hex data, source, and comments.

ISO/IEC FDIS 14496-22:2006(E)

148 © ISO/IEC 2006 — All rights reserved

Example 1: GDEF Header

Example 1 shows a GDEF Header definition with Offsets to each of the main tables in GDEF.

Hex Data Source Comments

 GDEFHeader

TheGDEFHeader GDEFHeader table definition

00010000 0x00010000 Version

000A GlyphClassDefTable Offset to GlyphClassDef table

0026 AttachListTable Offset to AttachList table

0040 LigCaretListTable Offset to LigCaretList table

005A MarkAttachClassDefTable Offset to Mark Attachment Class Definition Table

Example 2: GlyphClassDef Table

The GlyphClassDef table in Example 2 specifies a glyph for the each of the glyph classes predefined in the
GlyphClassDef Enumeration List.

Hex Data Source Comments

 ClassDefFormat2
GlyphClassDefTable ClassDef table definition

0002 2 ClassFormat

0004 4 ClassRangeCount
ClassRangeRecord[0]

0024 iGlyphID Start

0024 iGlyphID End

0001 1 Class, 1 = base glyphs
ClassRangeRecord[1]

009F ffiLigGlyphID Start

009F ffiLigGlyphID End

0002 2 Class, 2 = ligature glyphs
ClassRangeRecord[2]

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 149

0058 umlautAccentGlyphID Start

0058 umlautAccentGlyphID End

0003 3 Class, 3 = mark glyphs
ClassRangeRecord[3]

018F CurvedTailComponentGlyphID Start

018F CurvedTailComponentGlyphID End

0004 4 Class, 4 = component glyphs

Example 3: AttachList Table

In Example 3, the AttachList table enumerates the attachment points defined for two glyphs. The
GlyphCoverage table identifies the glyphs: "a" and "e." For each covered glyph, an AttachPoint table specifies
the attachment point count and point indices: one point for the "a" glyph and two for the "e" glyph.

Hex Data Source Comments

 AttachList
AttachListTable AttachList table definition

0012 GlyphCoverage Offset to Coverage table

0002 2 GlyphCount

0008 aAttachPoint AttachPoint[0]

000C eAttachPoint AttachPoint[1]

 AttachPoint
aAttachPoint AttachPoint table definition

0001 1 PointCount

0012 18 PointIndex[0]

 AttachPoint
eAttachPoint AttachPoint table definition

0002 2 PointCount

ISO/IEC FDIS 14496-22:2006(E)

150 © ISO/IEC 2006 — All rights reserved

000E 14 PointIndex[0]

0017 23 PointIndex[1]

 CoverageFormat1
GlyphCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

001C aGlyphID GlyphArray[0]

0020 eGlyphID GlyphArray[1]

Example 4: LigCaretList Table, LigGlyph Table and CaretValueFormat1 Table

Example 4 defines a list of ligature carets. The LigCoverage table lists all the ligature glyphs that define caret
positions. In this example, two ligatures are covered, "ffi" and "fi." For each covered glyph, a LigGlyph table
specifies the number of carets for the ligature and their coordinate values. The "fi" ligature defines one caret,
positioned between the "f" and "i" components; the "ffi" ligature defines two, one positioned between the two
"f" components and the other positioned between the "f" and "i." The CaretValue tables shown here use
Format1, where values are specified in design units only.

Hex Data Source Comments

 LigCaretList
LigCaretListTable LigCaretList table definition

0008 LigCoverage Offset to Coverage table

0002 2 LigGlyphCount

0010 fiLigGlyph Offset to LigGlyph table[0]

0014 ffiLigGlyph Offset to LigGlyph table[1]

 CoverageFormat1
LigCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 151

009F ffiLigGlyphID GlyphArray[0]

00A5 fiLigGlyphID GlyphArray[1]

 LigGlyph
fiLigGlyph LigGlyph table definition

0001 1 CaretCount, equals the number of components - 1

000E CaretFI CaretValue[0]

 LigGlyph
ffiLigGlyph LigGlyph table definition

0002 2 CaretCount, equals the number of components - 1

0006 CaretFFI1 CaretValue[0]

000E CaretFFI2 CaretValue[1]

 CaretValueFormat1
CaretFI CaretValue table definition

0001 1 CaretValueFormat design units only

025B 603 Coordinate X or Y value

 CaretValueFormat1
CaretFFI1 CaretValue table definition

0001 1 CaretValueFormat design units only

025B 603 Coordinate X or Y value

 CaretValueFormat1
CaretFFI2 CaretValue table definition

0001 1 CaretValueFormat design units only

04B6 1206 Coordinate X or Y value

ISO/IEC FDIS 14496-22:2006(E)

152 © ISO/IEC 2006 — All rights reserved

Example 5: CaretValueFormat2 Table

Example 5 shows a CaretValueFormat2 table that specifies a ligature caret coordinate in terms of a contour
point index on a specific glyph. The final position of the caret depends on the location of the contour point on
the glyph after hinting.

Hex Data Source Comments

 CaretValueFormat2
Caret1 CaretValue table definition

0002 2 CaretValueFormat contour point

000D 13 CaretValuePoint contour point index

Example 6: CaretValueFormat3 Table

In Example 6, the CaretValueFormat3 table defines a caret position in design units, but includes a Device
table to adjust the X or Y coordinate for the point size and resolution of the output font. Here, the Device table
specifies pixel adjustments for font sizes from 12 ppem to 17 ppem.

Hex Data Source Comments

 CaretValueFormat3
Caret3 CaretValue table definition

0003 3 CaretValueFormat design units plus Device table

04B6 1206 Coordinate X or Y value, design units

0006 CaretDevice Offset to Device table

 DeviceTableFormat2
CaretDevice Device Table definition

000C 12 StartSize

0011 17 EndSize

0002 2 DeltaFormat

 1 increase 12ppm by 1 pixel

 1 increase 13ppm by 1 pixel

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 153

 1 increase 14ppm by 1 pixel

1111 1 increase 15ppm by 1 pixel

 2 increase 16ppm by 2 pixels

2200 2 increase 17ppm by 2 pixels

Example 7: MarkAttachClassDef Table

In Example 7, the MarkAttachClassDef table specifies an attachment class for the each of the glyph ranges
predefined in the GlyphClassDef Enumeration List as marks.

Hex Data Source Comments

 ClassDefFormat2
theMarkAttachClassDefTable ClassDef table definition

0002 2 ClassFormat

0004 4 ClassRangeCount
ClassRangeRecord[0]

0268 graveAccentGlyphID Start

026A circumflexAccentGlyphID End

0001 1 Class, 1 = top marks
ClassRangeRecord[1]

0270 diaeresisAccentGlyphID Start

0272 acuteAccentGlyphID End

0001 1 Class, 1 = top marks
ClassRangeRecord[2]

028C diaeresisBelowGlyphID Start

028F cedillaGlyphID End

0002 2 Class, 2 = bottom marks
ClassRangeRecord[3]

0295 circumflexBelowGlyphID Start

ISO/IEC FDIS 14496-22:2006(E)

154 © ISO/IEC 2006 — All rights reserved

0295 circumflexBelowGlyphID End

0002 2 Class, 2 = bottom marks

5.3.3 GPOS – The Glyph Positioning Table

The Glyph Positioning table (GPOS) provides precise control over glyph placement for sophisticated text
layout and rendering in each script and language system that a font supports.

5.3.3.1 Overview

Complex glyph positioning becomes an issue in writing systems, such as Vietnamese, that use diacritical and
other marks to modify the sound or meaning of characters. These writing systems require controlled
placement of all marks in relation to one another for legibility and linguistic accuracy.

Figure 25 – Vietnamese words with marks.

Other writing systems require sophisticated glyph positioning for correct typographic composition. For instance,
Urdu glyphs are calligraphic and connect to one another along a descending, diagonal text line that proceeds
from right to left. To properly render Urdu, a text-processing client must modify both the horizontal (X) and
vertical (Y) positions of each glyph (see Figure 26).

Figure 26 – Urdu layout requires glyph positioning control, as well as contextual substitution

With the GPOS table, a font developer can define a complete set of positioning adjustment features in an OFF
font. GPOS data, organized by script and language system, is easy for a text-processing client to use to
position glyphs.

Positioning Glyphs with TrueType 1.0

Glyph positioning in TrueType uses only two values, placement and advance, to specify a glyph's position for
text layout. If glyphs are positioned with respect to a virtual "pen point" that moves along a line of text,
placement describes the glyph's position with respect to the current pen point, and advance describes where
to move the pen point to position the next glyph (see Figure 27). For horizontal text, placement corresponds to
the left side bearing, and advance corresponds to the advance width.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 155

Figure 27 – Glyph positioning with TrueType

TrueType specifies placement and advance only in the X direction for horizontal layout and only in the Y
direction for vertical layout. For simple Latin text layout, these two values may be adequate to position glyphs
correctly. But, for texts that require more sophisticated layout, the values must cover a richer range.
Placement and advance may need adjustment vertically, as well as horizontally.

The only positioning adjustment defined in TrueType is pair kerning, which modifies the horizontal spacing
between two glyphs. A typical kerning table lists pairs of glyphs and specifies how much space a text-
processing client should add or remove between the glyphs to properly display each pair. It does not provide
specific information about how to adjust the glyphs in each pair, and cannot adjust contexts of more than two
glyphs.

Positioning Glyphs with OFF

OFF fonts allow excellent control and flexibility for positioning a single glyph and for positioning multiple glyphs
in relation to one another. By using both X and Y values that the GPOS table defines for placement and
advance and by using glyph attachment points, a client can more precisely adjust the position of a glyph.

In addition, the GPOS table can reference a Device table to define subtle, device-dependent adjustments to
any placement or advance value at any font size and device resolution. For example, a Device table can
specify adjustments at 51 pixels per em (ppem) that do not occur at 50 ppem.

X and Y values specified in OFF fonts for placement operations are always within the typical Cartesian
coordinate system (origin at the baseline of the left side), regardless of the writing direction. Additionally, all
values specified are done so in font unit measurements. This is especially convenient for font designers, since
glyphs are drawn in the same coordinate system. However, it's important to note that the meaning of "advance
width" changes, depending on the writing direction.

For example, in left-to-right scripts, if the first glyph has an advance width of 100, then the second glyph
begins at 100,0. In right-to-left scripts, if the first glyph has an advance width of 100, then the second glyph
begins at -100,0. For a top-to-bottom feature, to increase the advance height of a glyph by 100, the YAdvance
= 100. For any feature, regardless of writing direction, to lower the dieresis over an 'o' by 10 units, set the
YPlacement = -10.

Other GPOS features can define attachment points to combine glyphs and position them with respect to one
another. A glyph might have multiple attachment points. The point used will depend on the glyph to be
attached. For instance, a base glyph could have attachment points for different diacritical marks.

ISO/IEC FDIS 14496-22:2006(E)

156 © ISO/IEC 2006 — All rights reserved

Figure 28 – Base glyph with multiple attachment points.

To reduce the size of the font file, a base glyph may use the same attachment point for all mark glyphs
assigned to a particular class. For example, a base glyph could have two attachment points, one above and
one below the glyph. Then all marks that attach above glyphs would be attached at the high point, and all
marks that attach below glyphs would be attached at the low point. Attachment points are useful in scripts,
such as Arabic, that combine numerous glyphs with vowel marks.

Attachment points also are useful for connecting cursive-style glyphs. Glyphs in cursive fonts can be designed
to attach or overlap when rendered. Alternatively, the font developer can use OFF to create a cursive
attachment feature and define explicit exit and entry attachment points for each glyph (see Figure 29).

Figure 29 – Entry and exit points marked on contextual Urdu glyph variations

The GPOS table supports eight types of actions for positioning and attaching glyphs:

• A single adjustment positions one glyph, such as a superscript or subscript.

• A pair adjustment positions two glyphs with respect to one another. Kerning is an example of pair
adjustment.

• A cursive attachment describes cursive scripts and other glyphs that are connected with attachment
points when rendered.

• A MarkToBase attachment positions combining marks with respect to base glyphs, as when
positioning vowels, diacritical marks, or tone marks in Arabic, Hebrew, and Vietnamese.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 157

• A MarkToLigature attachment positions combining marks with respect to ligature glyphs. Because
ligatures may have multiple points for attaching marks, the font developer needs to associate each
mark with one of the ligature glyph's components.

• A MarkToMark attachment positions one mark relative to another, as when positioning tone marks
with respect to vowel diacritical marks in Vietnamese.

• Contextual positioning describes how to position one or more glyphs in context, within an identifiable
sequence of specific glyphs, glyph classes, or varied sets of glyphs. One or more positioning
operations may be performed on "input" context sequences. Figure 30 illustrates a context for
positioning adjustments.

• Chaining Contextual positioning describes how to position one or more glyphs in a chained context,
within an identifiable sequence of specific glyphs, glyph classes, or varied sets of glyphs. One or more
positioning operations may be performed on "input" context sequences.

Figure 30 – Contextual positioning lowered the accent over a vowel glyph that followed an
overhanging uppercase glyph

5.3.3.2 GPOS Table Organization and Structure

The GPOS table begins with a header that defines Offsets to a ScriptList, a FeatureList, and a LookupList
(see Figure 31):

• The ScriptList identifies all the scripts and language systems in the font that use glyph positioning.

• The FeatureList defines all the glyph positioning features required to render these scripts and
language systems.

• The LookupList contains all the lookup data needed to implement each glyph positioning feature.

For a detailed discussion of ScriptLists, FeatureLists, and LookupLists see the OFF Common Table Formats .
The following discussion summarizes how the GPOS table works.

ISO/IEC FDIS 14496-22:2006(E)

158 © ISO/IEC 2006 — All rights reserved

Figure 31 – High-level organization of GPOS table

The GPOS table is orga

nized so text processing clients can easily locate the features and lookups that apply to a particular script or
language system. To access GPOS information, clients should use the following procedure:

1. Locate the current script in the GPOS ScriptList table.

2. If the language system is known, search the script for the correct LangSys table; otherwise, use the
script's default language system (DefaultLangSys table).

3. The LangSys table provides index numbers into the GPOS FeatureList table to access a required
feature and a number of additional features.

4. Inspect the FeatureTag of each feature, and select the features to apply to an input glyph string.

5. Each feature provides an array of index numbers into the GPOS LookupList table. Lookup data is
defined in one or more subtables that contain information about specific glyphs and the kinds of
operations to be performed on them.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 159

6. Assemble all lookups from the set of chosen features, and apply the lookups in the order given in the
LookupList table.

A lookup uses subtables to define the specific conditions, type, and results of a positioning action used to
implement a feature. All subtables in a lookup must be of the same LookupType, as listed in the LookupType
Enumeration table:

LookupType Enumeration table for glyph positioning

Value Type Description

1 Single adjustment Adjust position of a single glyph

2 Pair adjustment Adjust position of a pair of glyphs

3 Cursive attachment Attach cursive glyphs

4 MarkToBase
attachment

Attach a combining mark to a base glyph

5 MarkToLigature
attachment

Attach a combining mark to a ligature

6 MarkToMark
attachment

Attach a combining mark to another mark

7 Context positioning Position one or more glyphs in context

8 Chained Context
positioning

Position one or more glyphs in chained context

9 Extension
positioning

Extension mechanism for other positionings

10+ Reserved For future use

Each LookupType is defined by one or more subtables, whose format depends on the type of positioning
operation and the resulting storage efficiency. When glyph information is best presented in more than one
format, a single lookup may define more than one subtable, as long as all the subtables are of the same
LookupType. For example, within a given lookup, a glyph index array format may best represent one set of
target glyphs, whereas a glyph index range format may be better for another set.

A series of positioning operations on the same glyph or string requires multiple lookups, one for each separate
action. The values in the ValueRecords are accumulated in these cases. Each lookup is given a different array
number in the LookupList table and is applied in the LookupList order.

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client locates the target glyph or glyph context and performs a
positioning, if specified. To move to the "next" glyph, the client will typically skip all the glyphs that participated
in the lookup operation: glyphs that were positioned as well as any other glyphs that formed a context for the
operation.

ISO/IEC FDIS 14496-22:2006(E)

160 © ISO/IEC 2006 — All rights reserved

There is just one exception: the "next" glyph in a sequence may be one of those that formed a context for the
operation just performed. For example, in the case of pair positioning operations (i.e., kerning), if the position
value record for the second glyph is null, that glyph is treated as the "next" glyph in the sequence.

This rest of this clause describes the GPOS header and the subtables defined for each LookupType. Several
GPOS subtables share other tables: ValueRecords, Anchor tables, and MarkArrays. For easy reference, the
shared tables are described at the end of this clause.

GPOS Header

The GPOS table begins with a header that contains a version number (Version) initially set to 1.0
(0x00010000) and Offsets to three tables: ScriptList, FeatureList, and LookupList. For descriptions of these
tables, see subclause 5.2, OFF Common Table Formats. Example 1 at the end of this clause shows a GPOS
Header table definition.

GPOS Header

Value Type Description

Fixed Version Version of the GPOS table-initially = 0x00010000

Offset ScriptList Offset to ScriptList table-from beginning of GPOS table

Offset FeatureList Offset to FeatureList table-from beginning of GPOS table

Offset LookupList Offset to LookupList table-from beginning of GPOS table

5.3.3.3 GPOS Lookup Type Descriptions

Lookup Type 1: Single Adjustment Positioning Subtable

A single adjustment positioning subtable (SinglePos) is used to adjust the position of a single glyph, such as a
subscript or superscript. In addition, a SinglePos subtable is commonly used to implement lookup data for
contextual positioning.

A SinglePos subtable will have one of two formats: one that applies the same adjustment to a series of glyphs,
or one that applies a different adjustment for each unique glyph.

Single Adjustment Positioning: Format 1

A SinglePosFormat1 subtable applies the same positioning value or values to each glyph listed in its
Coverage table. For instance, when a font uses old-style numerals, this format could be applied to uniformly
lower the position of all math operator glyphs.

The Format 1 subtable consists of a format identifier (PosFormat), an Offset to a Coverage table that defines
the glyphs to be adjusted by the positioning values (Coverage), and the format identifier (ValueFormat) that
describes the amount and kinds of data in the ValueRecord.

The ValueRecord specifies one or more positioning values to be applied to all covered glyphs (Value). For
example, if all glyphs in the Coverage table require both horizontal and vertical adjustments, the ValueRecord
will specify values for both XPlacement and Yplacement.

Example 2 at the end of this clause shows a SinglePosFormat1 subtable used to adjust the placement of
subscript glyphs.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 161

SinglePosFormat1 subtable: Single positioning value

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of SinglePos subtable

uint16 ValueFormat Defines the types of data in the ValueRecord

ValueRecord Value Defines positioning value(s)-applied to all glyphs in the Coverage table

Single Adjustment Positioning: Format 2

A SinglePosFormat2 subtable provides an array of ValueRecords that contains one positioning value for each
glyph in the Coverage table. This format is more flexible than Format 1, but it requires more space in the font
file.

For example, assume that the Cyrillic script will be used in left-justified text. For all glyphs, Format 2 could
define position adjustments for left side bearings to align the left edges of the paragraphs. To achieve this, the
Coverage table would list every glyph in the script, and the SinglePosFormat2 subtable would define a
ValueRecord for each covered glyph. Correspondingly, each ValueRecord would specify an XPlacement
adjustment value for the left side bearing.
NOTE All ValueRecords defined in a SinglePos subtable must have the same ValueFormat. In this example, if
XPlacement is the only value that a ValueRecord needs to optically align the glyphs, then XPlacement will be the only
value specified in the ValueFormat of the subtable.

As in Format 1, the Format 2 subtable consists of a format identifier (PosFormat), an Offset to a Coverage
table that defines the glyphs to be adjusted by the positioning values (Coverage), and the format identifier
(ValueFormat) that describes the amount and kinds of data in the ValueRecords. In addition, the Format 2
subtable includes:

• A count of the ValueRecords (ValueCount). One ValueRecord is defined for each glyph in the
Coverage table.

• An array of ValueRecords that specify positioning values (Value). Because the array follows the
Coverage Index order, the first ValueRecord applies to the first glyph listed in the Coverage table, and
so on.

Example 3 at the end of this clause shows how to adjust the spacing of three dash glyphs with a
SinglePosFormat2 subtable.

SinglePosFormat2 subtable: Array of positioning values

Value Type Description

uint16 PosFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of SinglePos subtable

uint16 ValueFormat Defines the types of data in the ValueRecord

uint16 ValueCount Number of ValueRecords

ISO/IEC FDIS 14496-22:2006(E)

162 © ISO/IEC 2006 — All rights reserved

ValueRecord Value
[ValueCount]

Array of ValueRecords-positioning values applied to glyphs

Lookup Type 2:
Pair Adjustment Positioning Subtable

A pair adjustment positioning subtable (PairPos) is used to adjust the positions of two glyphs in relation to one
another-for instance, to specify kerning data for pairs of glyphs. Compared to a typical kerning table, however,
a PairPos subtable offers more flexiblity and precise control over glyph positioning. The PairPos subtable can
adjust each glyph in a pair independently in both the X and Y directions, and it can explicitly describe the
particular type of adjustment applied to each glyph. In addition, a PairPos subtable can use Device tables to
subtly adjust glyph positions at each font size and device resolution.

PairPos subtables can be either of two formats: one that identifies glyphs individually by index (Format 1), or
one that identifies glyphs by class (Format 2).

Pair Positioning Adjustment: Format 1

Format 1 uses glyph indices to access positioning data for one or more specific pairs of glyphs. All pairs are
specified in the order determined by the layout direction of the text.
NOTE For text written from right to left, the right-most glyph will be the first glyph in a pair; conversely, for text written
from left to right, the left-most glyph will be first.

A PairPosFormat1 subtable contains a format identifier (PosFormat) and two ValueFormats:

• ValueFormat1 applies to the ValueRecord of the first glyph in each pair. ValueRecords for all first
glyphs must use ValueFormat1. If ValueFormat1 is set to zero (0), the corresponding glyph has no
ValueRecord and, therefore, should not be repositioned.

• ValueFormat2 applies to the ValueRecord of the second glyph in each pair. ValueRecords for all
second glyphs must use ValueFormat2. If ValueFormat2 is set to null, then the second glyph of the
pair is the "next" glyph for which a lookup should be performed.

A PairPos subtable also defines an Offset to a Coverage table (Coverage) that lists the indices of the first
glyphs in each pair. More than one pair can have the same first glyph, but the Coverage table will list that
glyph only once.

The subtable also contains an array of Offsets to PairSet tables (PairSet) and a count of the defined tables
(PairSetCount). The PairSet array contains one Offset for each glyph listed in the Coverage table and uses
the same order as the Coverage Index.

PairPosFormat1 subtable: Adjustments for glyph pairs

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of PairPos subtable-only the first glyph
in each pair

uint16 ValueFormat1 Defines the types of data in ValueRecord1-for the first glyph in the pair -may be
zero (0)

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 163

uint16 ValueFormat2 Defines the types of data in ValueRecord2-for the second glyph in the pair -may
be zero (0)

uint16 PairSetCount Number of PairSet tables

Offset PairSetOffset
[PairSetCount]

Array of Offsets to PairSet tables-from beginning of PairPos subtable-ordered by
Coverage Index

A PairSet table enumerates all the glyph pairs that begin with a covered glyph. An array of PairValueRecords
(PairValueRecord) contains one record for each pair and lists the records sorted by the GlyphID of the second
glyph in each pair. PairValueCount specifies the number of PairValueRecords in the set.

PairSet table

Value Type Description

uint16 PairValueCount Number of PairValueRecords

struct PairValueRecord
[PairValueCount]

Array of PairValueRecords-ordered by GlyphID of the second glyph

A PairValueRecord specifies the second glyph in a pair (SecondGlyph) and defines a ValueRecord for each
glyph (Value1 and Value2). If ValueFormat1 is set to zero (0) in the PairPos subtable, ValueRecord1 will be
empty; similarly, if ValueFormat2 is 0, Value2 will be empty.

Example 4 at the end of this clause shows a PairPosFormat1 subtable that defines two cases of pair kerning.

PairValueRecord

Value Type Description

GlyphID SecondGlyph GlyphID of second glyph in the pair-first glyph is listed in the Coverage table

ValueRecord Value1 Positioning data for the first glyph in the pair

ValueRecord Value2 Positioning data for the second glyph in the pair

Pair Positioning Adjustment: Format 2

Format 2 defines a pair as a set of two glyph classes and modifies the positions of all the glyphs in a class.
For example, this format is useful in Japanese scripts that apply specific kerning operations to all glyph pairs
that contain punctuation glyphs. One class would be defined as all glyphs that may be coupled with
punctuation marks, and the other classes would be groups of similar punctuation glyphs.

The PairPos Format2 subtable begins with a format identifier (PosFormat) and an Offset to a Coverage table
(Coverage), measured from the beginning of the PairPos subtable. The Coverage table lists the indices of the
first glyphs that may appear in each glyph pair. More than one pair may begin with the same glyph, but the
Coverage table lists the glyph index only once.

A PairPosFormat2 subtable also includes two ValueFormats:

ISO/IEC FDIS 14496-22:2006(E)

164 © ISO/IEC 2006 — All rights reserved

• ValueFormat1 applies to the ValueRecord of the first glyph in each pair. ValueRecords for all first
glyphs must use ValueFormat1. If ValueFormat1 is set to zero (0), the corresponding glyph has no
ValueRecord and, therefore, should not be repositioned.

• ValueFormat2 applies to the ValueRecord of the second glyph in each pair. ValueRecords for all
second glyphs must use ValueFormat2. If ValueFormat2 is set to null, then the second glyph of the
pair is the "next" glyph for which a lookup should be performed.

PairPosFormat2 requires that each glyph in all pairs be assigned to a class, which is identified by an integer
called a class value. (For details about classes, see subclause 5.2, OFF Common Table Formats.) Pairs are
then represented in a two-dimensional array as sequences of two class values. Multiple pairs can be
represented in one Format 2 subtable.

A PairPosFormat2 subtable contains Offsets to two class definition tables: one that assigns class values to all
the first glyphs in all pairs (ClassDef1), and one that assigns class values to all the second glyphs in all pairs
(ClassDef2). If both glyphs in a pair use the same class definition, the Offset value will be the same for
ClassDef1 and ClassDef2. The subtable also specifies the number of glyph classes defined in ClassDef1
(Class1Count) and in ClassDef2 (Class2Count), including Class0.

For each class identified in the ClassDef1 table, a Class1Record enumerates all pairs that contain a particular
class as a first component. The Class1Record array stores all Class1Records according to class value.
NOTE Class1Records are not tagged with a class value identifier. Instead, the index value of a Class1Record in the
array defines the class value represented by the record. For example, the first Class1Record enumerates pairs that begin
with a Class 0 glyph, the second Class1Record enumerates pairs that begin with a Class1 glyph, and so on.

PairPosFormat2 subtable: Class pair adjustment

Value Type Description

uint16 PosFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of PairPos subtable-for the first glyph of
the pair

uint16 ValueFormat1 ValueRecord definition-for the first glyph of the pair-may be zero (0)

uint16 ValueFormat2 ValueRecord definition-for the second glyph of the pair-may be zero (0)

Offset ClassDef1 Offset to ClassDef table-from beginning of PairPos subtable-for the first glyph of
the pair

Offset ClassDef2 Offset to ClassDef table-from beginning of PairPos subtable-for the second glyph
of the pair

uint16 Class1Count Number of classes in ClassDef1 table-includes Class0

uint16 Class2Count Number of classes in ClassDef2 table-includes Class0

struct Class1Record
[Class1Count]

Array of Class1 records-ordered by Class1

Each Class1Record contains an array of Class2Records (Class2Record), which also are ordered by class
value. One Class2Record must be declared for each class in the ClassDef2 table, including Class 0.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 165

Class1Record

Value Type Description

struct Class2Record[Class2Count] Array of Class2 records-ordered by Class2

A Class2Record consists of two ValueRecords, one for the first glyph in a class pair (Value1) and one for the
second glyph (Value2). If the PairPos subtable has a value of zero (0) for ValueFormat1 or ValueFormat2, the
corresponding record (ValueRecord1 or ValueRecord2) will be empty.

Example 5 at the end of this clause demonstrates pair kerning with glyph classes in a PairPosFormat2
subtable.

Class2Record

Value Type Description

ValueRecord Value1 Positioning for first glyph-empty if ValueFormat1 = 0

ValueRecord Value2 Positioning for second glyph-empty if ValueFormat2 = 0

Lookup Type 3:
Cursive Attachment Positioning Subtable

Some cursive fonts are designed so that adjacent glyphs join when rendered with their default positioning.
However, if positioning adjustments are needed to join the glyphs, a cursive attachment positioning
(CursivePos) subtable can describe how to connect the glyphs by aligning two anchor points: the designated
exit point of a glyph, and the designated entry point of the following glyph.

The subtable has one format: CursivePosFormat1. It begins with a format identifier (PosFormat) and an Offset
to a Coverage table (Coverage), which lists all the glyphs that define cursive attachment data.

In addition, the subtable contains one EntryExitRecord for each glyph listed in the Coverage table, a count of
those records (EntryExitCount), and an array of those records in the same order as the Coverage Index
(EntryExitRecord).

CursivePosFormat1 subtable: Cursive attachment

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of CursivePos subtable

uint16 EntryExitCount Number of EntryExit records

struct EntryExitRecord[EntryExitCount] Array of EntryExit records-in Coverage Index order

Each EntryExitRecord consists of two Offsets: one to an Anchor table that identifies the entry point on the
glyph (EntryAnchor), and an Offset to an Anchor table that identifies the exit point on the glyph (ExitAnchor).
(For a complete description of the Anchor table, see the end of this clause.)

ISO/IEC FDIS 14496-22:2006(E)

166 © ISO/IEC 2006 — All rights reserved

To position glyphs using the CursivePosFormat1 subtable, a text-processing client aligns the ExitAnchor point
of a glyph with the EntryAnchor point of the following glyph. If no corresponding anchor point exists, either the
EntryAnchor or ExitAnchor Offset may be NULL.

At the end of this clause, Example 6 describes cursive glyph attachment in the Urdu language.

EntryExitRecord

Value Type Description

Offset EntryAnchor Offset to EntryAnchor table-from beginning of CursivePos subtable-may be
NULL

Offset ExitAnchor Offset to ExitAnchor table-from beginning of CursivePos subtable-may be NULL

Lookup Type 4:
MarkToBase Attachment Positioning Subtable

The MarkToBase attachment (MarkBasePos) subtable is used to position combining mark glyphs with respect
to base glyphs. For example, the Arabic, Hebrew, and Thai scripts combine vowels, diacritical marks, and
tone marks with base glyphs.

In the MarkBasePos subtable, every mark glyph has an anchor point and is associated with a class of marks.
Each base glyph then defines an anchor point for each class of marks it uses.

For example, assume two mark classes: all marks positioned above base glyphs (Class 0), and all marks
positioned below base glyphs (Class 1). In this case, each base glyph that uses these marks would define two
anchor points, one for attaching the mark glyphs listed in Class 0, and one for attaching the mark glyphs listed
in Class 1.

To identify the base glyph that combines with a mark, the text-processing client must look backward in the
glyph string from the mark to the preceding base glyph. To combine the mark and base glyph, the client aligns
their attachment points, positioning the mark with respect to the final pen point (advance) position of the base
glyph.

The MarkToBase Attachment subtable has one format: MarkBasePosFormat1. The subtable begins with a
format identifier (PosFormat) and Offsets to two Coverage tables: one that lists all the mark glyphs referenced
in the subtable (MarkCoverage), and one that lists all the base glyphs referenced in the subtable
(BaseCoverage).

For each mark glyph in the MarkCoverage table, a record specifies its class and an Offset to the Anchor table
that describes the mark's attachment point (MarkRecord). A mark class is identified by a specific integer,
called a class value. ClassCount specifies the total number of distinct mark classes defined in all the
MarkRecords.

The MarkBasePosFormat1 subtable also contains an Offset to a MarkArray table, which contains all the
MarkRecords stored in an array (MarkRecord) by MarkCoverage Index. A MarkArray table also contains a
count of the defined MarkRecords (MarkCount). (For details about MarkArrays and MarkRecords, see the end
of this clause.)

The MarkBasePosFormat1 subtable also contains an Offset to a BaseArray table (BaseArray).

MarkBasePosFormat1 subtable: MarkToBase attachment point

Value Type Description

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 167

uint16 PosFormat Format identifier-format = 1

Offset MarkCoverage Offset to MarkCoverage table-from beginning of MarkBasePos subtable

Offset BaseCoverage Offset to BaseCoverage table-from beginning of MarkBasePos subtable

uint16 ClassCount Number of classes defined for marks

Offset MarkArray Offset to MarkArray table-from beginning of MarkBasePos subtable

Offset BaseArray Offset to BaseArray table-from beginning of MarkBasePos subtable

The BaseArray table consists of an array (BaseRecord) and count (BaseCount) of BaseRecords. The array
stores the BaseRecords in the same order as the BaseCoverage Index. Each base glyph in the
BaseCoverage table has a BaseRecord.

BaseArray table

Value Type Description

uint16 BaseCount Number of BaseRecords

struct BaseRecord[BaseCount] Array of BaseRecords-in order of BaseCoverage Index

A BaseRecord declares one Anchor table for each mark class (including Class 0) identified in the
MarkRecords of the MarkArray. Each Anchor table specifies one attachment point used to attach all the marks
in a particular class to the base glyph. A BaseRecord contains an array of Offsets to Anchor tables
(BaseAnchor). The zero-based array of Offsets defines the entire set of attachment points each base glyph
uses to attach marks. The Offsets to Anchor tables are ordered by mark class.
NOTE Anchor tables are not tagged with class value identifiers. Instead, the index value of an Anchor table in the
array defines the class value represented by the Anchor table.

Example 7 at the end of this clause defines mark positioning above and below base glyphs with a
MarkBasePosFormat1 subtable.

BaseRecord

Value Type Description

Offset BaseAnchor[ClassCount] Array of Offsets (one per class) to Anchor tables-from beginning of
BaseArray table-ordered by class-zero-based

Lookup Type 5:
MarkToLigature Attachment Positioning Subtable

The MarkToLigature attachment (MarkLigPos) subtable is used to position combining mark glyphs with
respect to ligature base glyphs. With MarkToBase attachment, described previously, a single base glyph
defines an attachment point for each class of marks. In contrast, MarkToLigature attachment describes
ligature glyphs composed of several components that can each define an attachment point for each class of
marks.

ISO/IEC FDIS 14496-22:2006(E)

168 © ISO/IEC 2006 — All rights reserved

As a result, a ligature glyph may have multiple base attachment points for one class of marks. The specific
attachment point for a mark is defined by the ligature component that the subtable associates with the mark.

The MarkLigPos subtable can be used to define multiple mark-to-ligature attachments. In the subtable, every
mark glyph has an anchor point and is associated with a class of marks. Every ligature glyph specifies a two-
dimensional array of data: each component in a ligature defines an array of anchor points, one for each class
of marks.

For example, assume two mark classes: all marks positioned above base glyphs (Class 0), and all marks
positioned below base glyphs (Class 1). In this case, each component of a base ligature glyph may define two
anchor points, one for attaching the mark glyphs listed in Class 0, and one for attaching the mark glyphs listed
in Class 1. Alternatively, if the language system does not allow marks on the second component, the first
ligature component may define two anchor points, one for each class of marks, and the second ligature
component may define no anchor points.

To position a combining mark using a MarkToLigature attachment subtable, the text-processing client must
work backward from the mark to the preceding ligature glyph. To correctly access the subtables, the client
must keep track of the component associated with the mark. Aligning the attachment points combines the
mark and ligature.

The MarkToLigature attachment subtable has one format: MarkLigPosFormat1. The subtable begins with a
format identifier (PosFormat) and Offsets to two Coverage tables that list all the mark glyphs (MarkCoverage)
and Ligature glyphs (LigatureCoverage) referenced in the subtable.

For each glyph in the MarkCoverage table, a MarkRecord specifies its class and an Offset to the Anchor table
that describes the mark's attachment point. A mark class is identified by a specific integer, called a class value.
ClassCount records the total number of distinct mark classes defined in all MarkRecords.

The MarkBasePosFormat1 subtable contains an Offset, measured from the beginning of the subtable, to a
MarkArray table, which contains all MarkRecords stored in an array (MarkRecord) by MarkCoverage Index.
(For details about MarkArrays and MarkRecords, see the end of this clause.)

The MarkLigPosFormat1 subtable also contains an Offset to a LigatureArray table (LigatureArray).

MarkLigPosFormat1 subtable: MarkToLigature attachment

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset MarkCoverage Offset to Mark Coverage table-from beginning of MarkLigPos subtable

Offset LigatureCoverage Offset to Ligature Coverage table-from beginning of MarkLigPos subtable

uint16 ClassCount Number of defined mark classes

Offset MarkArray Offset to MarkArray table-from beginning of MarkLigPos subtable

Offset LigatureArray Offset to LigatureArray table-from beginning of MarkLigPos subtable

The LigatureArray table contains a count (LigatureCount) and an array of Offsets (LigatureAttach) to
LigatureAttach tables. The LigatureAttach array lists the Offsets to

LigatureAttach tables, one for each ligature glyph listed in the LigatureCoverage table, in the same order as
the LigatureCoverage Index.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 169

LigatureArray table

Value Type Description

uint16 LigatureCount Number of LigatureAttach table Offsets

Offset LigatureAttach
[LigatureCount]

Array of Offsets to LigatureAttach tables-from beginning of LigatureArray table-
ordered by LigatureCoverage Index

Each LigatureAttach table consists of an array (ComponentRecord) and count (ComponentCount) of the
component glyphs in a ligature. The array stores the ComponentRecords in the same order as the
components in the ligature. The order of the records also corresponds to the writing direction of the text. For
text written left to right, the first component is on the left; for text written right to left, the first component is on
the right.

LigatureAttach table

Value Type Description

uint16 ComponentCount Number of ComponentRecords in this ligature

struct ComponentRecord[ComponentCount] Array of Component records-ordered in writing direction

A ComponentRecord, one for each component in the ligature, contains an array of Offsets to the Anchor
tables that define all the attachment points used to attach marks to the component (LigatureAnchor). For each
mark class (including Class 0) identified in the MarkArray records, an Anchor table specifies the point used to
attach all the marks in a particular class to the ligature base glyph, relative to the component.

In a ComponentRecord, the zero-based LigatureAnchor array lists Offsets to Anchor tables by mark class. If a
component does not define an attachment point for a particular class of marks, then the Offset to the
corresponding Anchor table will be NULL.

Example 8 at the end of this clause shows a MarkLisPosFormat1 subtable used to attach mark accents to a
ligature glyph in the Arabic script.

ComponentRecord

Value Type Description

Offset LigatureAnchor
[ClassCount]

Array of Offsets (one per class) to Anchor tables-from beginning of
LigatureAttach table-ordered by class-NULL if a component does not have an
attachment for a class-zero-based array

Lookup Type 6:
MarkToMark Attachment Positioning Subtable

The MarkToMark attachment (MarkMarkPos) subtable is identical in form to the MarkToBase attachment
subtable, although its function is different. MarkToMark attachment defines the position of one mark relative to
another mark as when, for example, positioning tone marks with respect to vowel diacritical marks in
Vietnamese.

The attaching mark is Mark1, and the base mark being attached to is Mark2. In the MarkMarkPos subtable,
every Mark1 glyph has an anchor attachment point and is associated with a class of marks. Each Mark2 glyph

ISO/IEC FDIS 14496-22:2006(E)

170 © ISO/IEC 2006 — All rights reserved

defines an anchor point for each class of marks. For example, assume two Mark1 classes: all marks
positioned to the left of Mark2 glyphs (Class 0), and all marks positioned to the right of Mark2 glyphs (Class 1).
Each Mark2 glyph that uses these marks defines two anchor points: one for attaching the Mark1 glyphs listed
in Class 0, and one for attaching the Mark1 glyphs listed in Class 1.

The Mark2 glyph that combines with a Mark1 glyph is the glyph preceding the Mark1 glyph in glyph string
order (skipping glyphs according to LookupFlags). The subtable applies precisely when that Mark2 glyph is
covered by Mark2Coverage. To combine the mark glyphs, the Mark1 glyph is moved such that the relevant
attachment points coincide. The input context for MarkToBase, MarkToLigature and MarkToMark positioning
tables is the mark that is being positioned. If a sequence contains several marks, a lookup may act on it
several times, to position them.

The MarkToMark attachment subtable has one format: MarkMarkPosFormat1. The subtable begins with a
format identifier (PosFormat) and Offsets to two Coverage tables: one that lists all the Mark1 glyphs
referenced in the subtable (Mark1Coverage), and one that lists all the Mark2 glyphs referenced in the subtable
(Mark2Coverage).

For each mark glyph in the Mark1Coverage table, a MarkRecord specifies its class and an Offset to the
Anchor table that describes the mark's attachment point. A mark class is identified by a specific integer, called
a class value. (For details about classes, see subclause 5.2, OFF Common Table Formats.) ClassCount
specifies the total number of distinct mark classes defined in all the MarkRecords.

The MarkMarkPosFormat1 subtable also contains two Offsets, measured from the beginning of the subtable,
to two arrays:

• The MarkArray table contains all MarkRecords stored by Mark1Coverage Index in an array
(MarkRecord). The MarkArray table also contains a count of the number of defined MarkRecords
(MarkCount).

• The Mark2Array table consists of an array (Mark2Record) and count (Mark2Count) of Mark2Records.

For details about MarkArrays and MarkRecords, see the end of this clause.

MarkMarkPosFormat1 subtable: MarkToMark attachment

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset Mark1Coverage Offset to Combining Mark Coverage table-from beginning of MarkMarkPos
subtable

Offset Mark2Coverage Offset to Base Mark Coverage table-from beginning of MarkMarkPos subtable

uint16 ClassCount Number of Combining Mark classes defined

Offset Mark1Array Offset to MarkArray table for Mark1-from beginning of MarkMarkPos subtable

Offset Mark2Array Offset to Mark2Array table for Mark2-from beginning of MarkMarkPos subtable

The Mark2Array, shown next, contains one Mark2Record for each Mark2 glyph listed in the Mark2Coverage
table. It stores the records in the same order as the Mark2Coverage Index.

Mark2Array table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 171

Value Type Description

uint16 Mark2Count Number of Mark2 records

struct Mark2Record
[Mark2Count]

Array of Mark2 records-in Coverage order

Each Mark2Record contains an array of Offsets to Anchor tables (Mark2Anchor). The array of zero-based
Offsets, measured from the beginning of the Mark2Array table, defines the entire set of Mark2 attachment
points used to attach Mark1 glyphs to a specific Mark2 glyph. The Anchor tables in the Mark2Anchor array are
ordered by Mark1 class value.

A Mark2Record declares one Anchor table for each mark class (including Class 0) identified in the
MarkRecords of the MarkArray. Each Anchor table specifies one Mark2 attachment point used to attach all the
Mark1 glyphs in a particular class to the Mark2 glyph.

Example 9 at the end of the clause shows a MarkMarkPosFormat1 subtable for attaching one mark to another
in the Arabic script.

Mark2Record

Value Type Description

Offset Mark2Anchor
[ClassCount]

Array of Offsets (one per class) to Anchor tables-from beginning of Mark2Array
table-zero-based array

Lookup Type 7:
Contextual Positioning Subtables

A Contextual Positioning (ContextPos) subtable defines the most powerful type of glyph positioning lookup. It
describes glyph positioning in context so a text-processing client can adjust the position of one or more glyphs
within a certain pattern of glyphs. Each subtable describes one or more "input" glyph sequences and one or
more positioning operations to be performed on that sequence.

ContextPos subtables can have one of three formats, which closely mirror the formats used for contextual
glyph substitution. One format applies to specific glyph sequences (Format 1), one defines the context in
terms of glyph classes (Format 2), and the third format defines the context in terms of sets of glyphs (Format
3).

All three formats of ContextPos subtables specify positioning data in a PosLookupRecord. A description of
that record follows.

PosLookupRecord

All contextual positioning subtables specify the positioning data in a PosLookupRecord. Each record contains
a SequenceIndex, which indicates where the positioning operation will occur in the glyph sequence. In
addition, a LookupListIndex identifies the lookup to be applied at the glyph position specified by the
SequenceIndex.

The order in which lookups are applied to the entire glyph sequence, called the "design order," can be
significant, so PosLookupRecord data should be defined accordingly.

The contextual substitution subtables defined in Examples 10, 11, and 12 show PosLookupRecords.

ISO/IEC FDIS 14496-22:2006(E)

172 © ISO/IEC 2006 — All rights reserved

PosLookupRecord

Value Type Description

uint16 SequenceIndex Index to input glyph sequence-first glyph = 0

uint16 LookupListIndex Lookup to apply to that position-zero-based

Context Positioning Subtable: Format 1

Format 1 defines the context for a glyph positioning operation as a particular sequence of glyphs. For example,
a context could be <To>, <xyzabc>, <!?*#@>, or any other glyph sequence.

Within the context, Format 1 identifies particular glyph positions (not glyph indices) as the targets for specific
adjustments. When a text-processing client locates a context in a string of glyphs, it makes the adjustment by
applying the lookup data defined for a targeted position at that location.

For example, suppose that accent mark glyphs above lowercase x-height vowel glyphs must be lowered when
an overhanging capital letter glyph precedes the vowel. When the client locates this context in the text, the
subtable identifies the position of the accent mark and a lookup index. A lookup specifies a positioning action
that lowers the accent mark over the vowel so that it does not collide with the overhanging capital.

ContextPosFormat1 defines the context in two places. A Coverage table specifies the first glyph in the input
sequence, and a PosRule table identifies the remaining glyphs. To describe the context used in the previous
example, the Coverage table lists the glyph index of the first component of the sequence (the overhanging
capital), and a PosRule table defines indices for the lowercase x-height vowel glyph and the accent mark.

A single ContextPosFormat1 subtable may define more than one context glyph sequence. If different context
sequences begin with the same glyph, then the Coverage table should list the glyph only once because all first
glyphs in the table must be unique. For example, if three contexts each start with an "s" and two start with a
"t," then the Coverage table will list one "s" and one "t."

For each context, a PosRule table lists all the glyphs, in order, that follow the first glyph. The table also
contains an array of PosLookupRecords that specify the positioning lookup data for each glyph position
(including the first glyph position) in the context.

All the PosRule tables defining contexts that begin with the same first glyph are grouped together and defined
in a PosRuleSet table. For example, the PosRule tables that define the three contexts that begin with an "s"
are grouped in one PosRuleSet table, and the PosRule tables that define the two contexts that begin with a "t"
are grouped in a second PosRuleSet table. Each unique glyph listed in the Coverage table must have a
PosRuleSet table that defines all the PosRule tables for a covered glyph.

To locate a context glyph sequence, the text-processing client searches the Coverage table each time it
encounters a new text glyph. If the glyph is covered, the client reads the corresponding PosRuleSet table and
examines each PosRule table in the set to determine whether the rest of the context defined there matches
the subsequent glyphs in the text. If the context and text string match, the client finds the target glyph position,
applies the lookup for that position, and completes the positioning action.

A ContextPosFormat1 subtable contains a format identifier (PosFormat), an Offset to a Coverage table
(Coverage), a count of the number of PosRuleSets that are defined (PosRuleSetCount), and an array of
Offsets to the PosRuleSet tables (PosRuleSet). As mentioned, one PosRuleSet table must be defined for
each glyph listed in the Coverage table.

In the PosRuleSet array, the PosRuleSet tables are ordered in the Coverage Index order. The first
PosRuleSet in the array applies to the first GlyphID listed in the Coverage table, the second PosRuleSet in the
array applies to the second GlyphID listed in the Coverage table, and so on.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 173

ContextPosFormat1 subtable: Simple context positioning

Value Type Description

uint16 PosFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of ContextPos subtable

uint16 PosRuleSetCount Number of PosRuleSet tables

Offset PosRuleSet
[PosRuleSetCount]

Array of Offsets to PosRuleSet tables-from beginning of ContextPos subtable-
ordered by Coverage Index

A PosRuleSet table consists of an array of Offsets to PosRule tables (PosRule), ordered by preference, and a
count of the PosRule tables defined in the set (PosRuleCount).

PosRuleSet table: All contexts beginning with the same glyph

Value Type Description

uint16 PosRuleCount Number of PosRule tables

Offset PosRule
[PosRuleCount]

Array of Offsets to PosRule tables-from beginning of PosRuleSet-ordered by
preference

A PosRule table consists of a count of the glyphs to be matched in the input context sequence (GlyphCount),
including the first glyph in the sequence, and an array of glyph indices that describe the context (Input). The
Coverage table specifies the index of the first glyph in the context, and the Input array begins with the second
glyph in the context sequence. As a result, the first index position in the array is specified with the number one
(1), not zero (0). The Input array lists the indices in the order the corresponding glyphs appear in the text. For
text written from right to left, the right-most glyph will be first; conversely, for text written from left to right, the
left-most glyph will be first.

A PosRule table also contains a count of the positioning operations to be performed on the input glyph
sequence (PosCount) and an array of PosLookupRecords (PosLookupRecord). Each record specifies a
position in the input glyph sequence and a LookupList index to the positioning lookup to be applied there. The
array should list records in design order, or the order the lookups should be applied to the entire glyph
sequence.

Example 10 at the end of this clause demonstrates glyph kerning in context with a ContextPosFormat1
subtable.

PosRule subtable

Value Type Description

uint16 GlyphCount Number of glyphs in the Input glyph sequence

uint16 PosCount Number of PosLookupRecords

GlyphID Input Array of input GlyphIDs-starting with the second glyph

ISO/IEC FDIS 14496-22:2006(E)

174 © ISO/IEC 2006 — All rights reserved

[GlyphCount - 1]

struct PosLookupRecord[PosCount] Array of positioning lookups-in design order

Context Positioning Subtable: Format 2

Format 2, more flexible than Format 1, describes class-based context positioning. For this format, a specific
integer, called a class value, must be assigned to each glyph in all context glyph sequences. Contexts are
then defined as sequences of class values. This subtable may define more than one context.

To clarify the notion of class-based context rules, suppose that certain sequences of three glyphs need
special kerning. The glyph sequences consist of an uppercase glyph that overhangs on the right side, a
punctuation mark glyph, and then a quote glyph. In this case, the set of uppercase glyphs would constitute
one glyph class (Class1), the set of punctuation mark glyphs would constitute a second glyph class (Class 2),
and the set of quote mark glyphs would constitute a third glyph class (Class 3). The input context might be
specified with a context rule (PosClassRule) that describes "the set of glyph strings that form a sequence of
three glyph classes, one glyph from Class 1, followed by one glyph from Class 2, followed by one glyph from
Class 3."

Each ContextPosFormat2 subtable contains an Offset to a class definition table (ClassDef), which defines the
class values of all glyphs in the input contexts that the subtable describes. Generally, a unique ClassDef will
be declared in each instance of the ContextPosFormat2 subtable that is included in a font, even though
several Format 2 subtables may share ClassDef tables. Classes are exclusive sets; a glyph cannot be in more
than one class at a time. The output glyphs that replace the glyphs in the context sequence do not need class
values because they are specified elsewhere by GlyphID.

The ContextPosFormat2 subtable also contains a format identifier (PosFormat) and defines an Offset to a
Coverage table (Coverage). For this format, the Coverage table lists indices for the complete set of glyphs
(not glyph classes) that may appear as the first glyph of any class-based context. In other words, the
Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in any of the
context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then the
Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ContextPosFormat2 subtable also defines an array of Offsets to the PosClassSet tables (PosClassSet),
along with a count (including Class0) of the PosClassSet tables (PosClassSetCnt). In the array, the
PosClassSet tables are ordered by ascending class value (from 0 to PosClassSetCnt - 1).

A PosClassSet array contains one Offset for each glyph class, including Class 0. PosClassSets are not
explicitly tagged with a class value; rather, the index value of the PosClassSet in the PosClassSet array
defines the class that a PosClassSet represents.

For example, the first PosClassSet listed in the array contains all the PosClassRules that define contexts
beginning with Class 0 glyphs, the second PosClassSet contains all PosClassRules that define contexts
beginning with Class 1 glyphs, and so on. If no PosClassRules begin with a particular class (that is, if a
PosClassSet contains no PosClassRules), then the Offset to that particular PosClassSet in the PosClassSet
array will be set to NULL.

ContextPosFormat2 subtable: Class-based context glyph positioning

Value Type Description

uint16 PosFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of ContextPos subtable

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 175

Offset ClassDef Offset to ClassDef table-from beginning of ContextPos subtable

uint16 PosClassSetCnt Number of PosClassSet tables

Offset PosClassSet
[PosClassSetCnt]

Array of Offsets to PosClassSet tables-from beginning of ContextPos subtable-
ordered by class-may be NULL

All the PosClassRules that define contexts beginning with the same class are grouped together and defined in
a PosClassSet table. Consequently, the PosClassSet table identifies the class of a context's first component.

A PosClassSet enumerates all the PosClassRules that begin with a particular glyph class. For instance,
PosClassSet0 represents all the PosClassRules that describe contexts starting with Class 0 glyphs, and
PosClassSet1 represents all the PosClassRules that define contexts starting with Class 1 glyphs.

Each PosClassSet table consists of a count of the PosClassRules defined in the PosClassSet
(PosClassRuleCnt) and an array of Offsets to PosClassRule tables (PosClassRule). The PosClassRule tables
are ordered by preference in the PosClassRule array of the PosClassSet.

PosClassSet table: All contexts beginning with the same class

Value Type Description

uint16 PosClassRuleCnt Number of PosClassRule tables

Offset PosClassRule[PosClassRuleCnt] Array of Offsets to PosClassRule tables-from beginning of
PosClassSet-ordered by preference

For each context, a PosClassRule table contains a count of the glyph classes in a given context (GlyphCount),
including the first class in the context sequence. A class array lists the classes, beginning with the second
class, that follow the first class in the context. The first class listed indicates the second position in the context
sequence.
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most glyph
will be first. Conversely, for text written from left to right, the left-most glyph will be first.

The values specified in the Class array are those defined in the ClassDef table. For example, consider a
context consisting of the sequence: Class 2, Class 7, Class 5, Class 0. The Class array will read: Class[0] = 7,
Class[1] = 5, and Class[2] = 0. The first class in the sequence, Class 2, is defined by the index into the
PosClassSet array of Offsets. The total number and sequence of glyph classes listed in the Class array must
match the total number and sequence of glyph classes contained in the input context.

A PosClassRule also contains a count of the positioning operations to be performed on the context
(PosCount) and an array of PosLookupRecords (PosLookupRecord) that supply the positioning data. For
each position in the context that requires a positioning operation, a PosLookupRecord specifies a LookupList
index and a position in the input glyph class sequence where the lookup is applied. The PosLookupRecord
array lists PosLookupRecords in design order, or the order in which lookups are applied to the entire glyph
sequence.

Example 11 at the end of this clause demonstrates a ContextPosFormat2 subtable that uses glyph classes to
modify accent positions in glyph strings.

PosClassRule table: One class context definition

Value Type Description

ISO/IEC FDIS 14496-22:2006(E)

176 © ISO/IEC 2006 — All rights reserved

uint16 GlyphCount Number of glyphs to be matched

uint16 PosCount Number of PosLookupRecords

uint16 Class
[GlyphCount - 1]

Array of classes-beginning with the second class-to be matched to the
input glyph sequence

struct PosLookupRecord[PosCount] Array of positioning lookups-in design order

Context Positioning Subtable: Format 3

Format 3, coverage-based context positioning, defines a context rule as a sequence of coverages. Each
position in the sequence may specify a different Coverage table for the set of glyphs that matches the context
pattern. With Format 3, the glyph sets defined in the different Coverage tables may intersect, unlike Format 2
which specifies fixed class assignments for the lookup (they cannot be changed at each position in the context
sequence) and exclusive classes (a glyph cannot be in more than one class at a time).

For example, consider an input context that contains an uppercase glyph (position 0), followed by any narrow
uppercase glyph (position 1), and then another uppercase glyph (position 2). This context requires three
Coverage tables, one for each position:

• In position 0, the first position, the Coverage table lists the set of all uppercase glyphs.

• In position 1, the second position, the Coverage table lists the set of all narrow uppercase glyphs,
which is a subset of the glyphs listed in the Coverage table for position 0.

• In position 2, the Coverage table lists the set of all uppercase glyphs again.
NOTE Both position 0 and position 2 can use the same Coverage table.

Unlike Formats 1 and 2, this format defines only one context rule at a time. It consists of a format identifier
(PosFormat), a count of the number of glyphs in the sequence to be matched (GlyphCount), and an array of
Coverage Offsets that describe the input context sequence (Coverage).
NOTE The Coverage tables listed in the Coverage array must be listed in text order according to the writing direction.
For text written from right to left, the right-most glyph will be first. Conversely, for text written from left to right, the left-most
glyph will be first.

The subtable also contains a count of the positioning operations to be performed on the input Coverage
sequence (PosCount) and an array of PosLookupRecords (PosLookupRecord) in design order, or the order in
which lookups are applied to the entire glyph sequence.

Example 12 at the end of this clause changes the positions of math sign glyphs in math equations with a
ContextPosFormat3 subtable.

ContextPosFormat3 subtable: Coverage-based context glyph positioning

Value Type Description

uint16 PosFormat Format identifier-format = 3

uint16 GlyphCount Number of glyphs in the input sequence

uint16 PosCount Number of PosLookupRecords

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 177

Offset Coverage
[GlyphCount]

Array of Offsets to Coverage tables-from beginning of ContextPos subtable

struct PosLookupRecord
[PosCount]

Array of positioning lookups-in design order

LookupType 8: Chaining Contextual Positioning Subtable

A Chaining Contextual Positioning subtable(ChainContextPos)describes glyph positioning in context with an
ability to look back and/or look ahead in the sequence of glyphs. The design of the Chaining Contextual
Positioning subtable is parallel to that of the Contextual Positioning subtable, including the availability of three
formats.

To specify the context, the coverage table lists the first glyph in the input sequence, and the ChainPosRule
subtable defines the rest. Once a covered glyph is found at position i, the client reads the corresponding
ChainPosRuleSet table and examines each table to determine if it matches the surrounding glyphs in the text.
There is a match if the string <backtrack sequence>+<input sequence>+<lookahead sequence> matches with
the glyphs at position i - BacktrackGlyphCount in the text.

If there is a match, then the client finds the target glyphs for positioning and performs the operations. Please
note that (just like in the ContextPosFormat1 subtable) these lookups are required to operate within the range
of text from the covered glyph to the end of the input sequence. No positioning operations can be defined for
the backtracking sequence or the lookahead sequence.

To clarify the ordering of glyph arrays for input, backtrack and lookahead sequences, the following illustration
is provided. Input sequence match begins at i where the input sequence match begins. The backtrack
sequence is ordered beginning at i - 1 and increases in Offset value as one moves away from i. The
lookahead sequence begins after the input sequence and increases in logical order.

Logical order - a b c d e f g h i j

 i

Input sequence - 0 1

Backtrack sequence - 3 2 1 0

Lookahead sequence - 0 1 2 3

Chaining Context Positioning Format 1: Simple Chaining Context Glyph Positioning

This Format is identical to Format 1 of Context Positioning lookup except that the PosRule table is replaced
with a ChainPosRule table. (Correspondingly, the ChainPosRuleSet table differs from the PosRuleSet table
only in that it lists Offsets to ChainPosRule subtables instead of PosRule tables; and the
ChainContextPosFormat1 subtable lists Offsets to ChainPosRuleSet subtables instead of PosRuleSet
subtables.)

ChainContextPosFormat1 subtable: Simple context positioning

Value Type Description

uint16 PosFormat Format identifier-format = 1

ISO/IEC FDIS 14496-22:2006(E)

178 © ISO/IEC 2006 — All rights reserved

Offset Coverage Offset to Coverage table-from beginning of ContextPos subtable

uint16 ChainPosRuleSetCount Number of ChainPosRuleSet tables

Offset ChainPosRuleSet
[ChainPosRuleSetCount]

Array of Offsets to ChainPosRuleSet tables-from beginning of ContextPos
subtable-ordered by Coverage Index

A ChainPosRuleSet table consists of an array of Offsets to ChainPosRule tables (ChainPosRule), ordered by
preference, and a count of the ChainPosRule tables defined in the set (ChainPosRuleCount).

ChainPosRuleSet table: All contexts beginning with the same glyph

Value Type Description

uint16 ChainPosRuleCount Number of ChainPosRule tables

Offset ChainPosRule
[ChainPosRuleCount]

Array of Offsets to ChainPosRule tables-from beginning of ChainPosRuleSet-
ordered by preference

ChainPosRule subtable

Type Name Description

uint16 BacktrackGlyphCount Total number of glyphs in the backtrack sequence (number of glyphs to be
matched before the first glyph)

GlyphID Backtrack
[BacktrackGlyphCount]

Array of backtracking GlyphID's (to be matched before the input sequence)

uint16 InputGlyphCount Total number of glyphs in the input sequence (includes the first glyph)

GlyphID Input
[InputGlyphCount - 1]

Array of input GlyphIDs (start with second glyph)

uint16 LookaheadGlyphCount Total number of glyphs in the look ahead sequence (number of glyphs to be
matched after the input sequence)

GlyphID LookAhead
[LookAheadGlyphCount]

Array of lookahead GlyphID's (to be matched after the input sequence)

uint16 PosCount Number of PosLookupRecords

struct PosLookupRecord
[PosCount]

Array of PosLookupRecords (in design order)

Chaining Context Positioning Format 2: Class-based Chaining Context Glyph Positioning

This lookup Format is parallel to the Context Positioning format 2, with PosClassSet subtable changed to
ChainPosClassSet subtable, and PosClassRule subtable changed to ChainPosClassRule subtable.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 179

To chain contexts, three classes are used in the glyph ClassDef table: Backtrack ClassDef, Input ClassDef,
and Lookahead ClassDef.

ChainContextPosFormat2 subtable: Chaining class-based context glyph positioning

Value Type Description

uint16 PosFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of ChainContextPos subtable

Offset BacktrackClassDef Offset to ClassDef table containing backtrack sequence context-from
beginning of ChainContextPos subtable

Offset InputClassDef Offset to ClassDef table containing input sequence context-from beginning of
ChainContextPos subtable

Offset LookaheadClassDef Offset to ClassDef table containing lookahead sequence context-from
beginning of ChainContextPos subtable

uint16 ChainPosClassSetCnt Number of ChainPosClassSet tables

Offset ChainPosClassSet
[ChainPosClassSetCnt]

Array of Offsets to ChainPosClassSet tables-from beginning of
ChainContextPos subtable-ordered by input class-may be NULL

All the ChainPosClassRules that define contexts beginning with the same class are grouped together and
defined in a ChainPosClassSet table. Consequently, the ChainPosClassSet table identifies the class of a
context's first component.

ChainPosClassSet table: All contexts beginning with the same class

Value Type Description

uint16 ChainPosClassRuleCnt Number of ChainPosClassRule tables

Offset ChainPosClassRule[ChainPosClassRuleCnt] Array of Offsets to ChainPosClassRule tables-from
beginning of ChainPosClassSet-ordered by preference

ChainPosClassRule subtable

Type Name Description

uint16 BacktrackGlyphCount Total number of glyphs in the backtrack sequence (number of glyphs to be
matched before the first glyph)

uint16 Backtrack
[BacktrackGlyphCount]

Array of backtracking classes(to be matched before the input sequence)

uint16 InputGlyphCount Total number of classes in the input sequence (includes the first class)

ISO/IEC FDIS 14496-22:2006(E)

180 © ISO/IEC 2006 — All rights reserved

uint16 Input
[InputGlyphCount - 1]

Array of input classes(start with second class; to be matched with the input
glyph sequence)

uint16 LookaheadGlyphCount Total number of classes in the look ahead sequence (number of classes to be
matched after the input sequence)

uint16 LookAhead
[LookAheadGlyphCount]

Array of lookahead classes(to be matched after the input sequence)

uint16 PosCount Number of PosLookupRecords

struct PosLookupRecord
[ChainPosCount]

Array of PosLookupRecords (in design order)

Chaining Context Positioning Format 3: Coverage-based Chaining Context Glyph Positioning

Format 3 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 3,
the glyph sets defined in the different Coverage tables may intersect, unlike Format 2 which specifies fixed
class assignments (identical for each position in the backtrack, input, or lookahead sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written
from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most glyph will
be first.

The subtable also contains a count of the positioning operations to be performed on the input Coverage
sequence (PosCount) and an array of PosLookupRecords (PosLookupRecord) in design order: that is, the
order in which lookups should be applied to the entire glyph sequence.

ChainContextPosFormat3 subtable: Coverage-based chaining context glyph positioning

Type Name Description

uint16 PosFormat Format identifier-format = 3

uint16 BacktrackGlyphCount Number of glyphs in the backtracking sequence

Offset Coverage[BacktrackGlyphCount] Array of Offsets to coverage tables in backtracking sequence, in
glyph sequence order

uint16 InputGlyphCount Number of glyphs in input sequence

Offset Coverage[InputGlyphCount] Array of Offsets to coverage tables in input sequence, in glyph
sequence order

uint16 LookaheadGlyphCount Number of glyphs in lookahead sequence

Offset Coverage[LookaheadGlyphCount] Array of Offsets to coverage tables in lookahead sequence, in glyph
sequence order

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 181

uint16 PosCount Number of PosLookupRecords

struct PosLookupRecord
[PosCount]

Array of PosLookupRecords,in design order

LookupType 9: Extension Positioning

This lookup provides a mechanism whereby any other lookup type's subtables are stored at a 32-bit Offset
location in the 'GPOS' table. This is needed if the total size of the subtables exceeds the 16-bit limits of the
various other Offsets in the 'GPOS' table. In this specification, the subtable stored at the 32-bit Offset location
is termed the "extension" subtable.

ExtensionPosFormat1 subtable

Type Name Description

USHORT PosFormat Format identifier. Set to 1.

USHORT ExtensionLookupType Lookup type of subtable referenced by ExtensionOffset (i.e. the extension
subtable).

ULONG ExtensionOffset Offset to the extension subtable, of lookup type ExtensionLookupType, relative
to the start of the ExtensionPosFormat1 subtable.

ExtensionLookupType must be set to any lookup type other than 9. All subtables in a LookupType 9 lookup
must have the same ExtensionLookupType. All Offsets in the extension subtables are set in the usual way, i.e.
relative to the extension subtables themselves.

When an OFF layout engine encounters a LookupType 9 Lookup table, it shall:

• Proceed as though the Lookup table's LookupType field were set to the ExtensionLookupType of the
subtables.

• Proceed as though each extension subtable referenced by ExtensionOffset replaced the LookupType
9 subtable that referenced it.

5.3.3.4 Shared Tables: Value Record, Anchor Table and Mark Array

Several lookup subtables described earlier in this clause refer to one or more of the same tables for
positioning data: ValueRecord, Anchor table, and MarkArray. For easy reference, those shared tables are
described here.

Example 14 at the end of the clause uses a ValueFormat table and ValueRecord to specify positioning values
in GPOS.

ValueRecord

GPOS subtables use ValueRecords to describe all the variables and values used to adjust the position of a
glyph or set of glyphs. A ValueRecord may define any combination of X and Y values (in design units) to add
to (positive values) or subtract from (negative values) the placement and advance values provided in the font.
A ValueRecord also may contain an Offset to a Device table for each of the specified values. If a ValueRecord
specifies more than one value, the values should be listed in the order shown in the ValueRecord definition.

ISO/IEC FDIS 14496-22:2006(E)

182 © ISO/IEC 2006 — All rights reserved

The text-processing client must be aware of the flexible and multi-dimensional nature of ValueRecords in the
GPOS table. Because the GPOS table uses ValueRecords for many purposes, the sizes and contents of
ValueRecords may vary from subtable to subtable.

ValueRecord (all fields are optional)

Value Type Description

int16 XPlacement Horizontal adjustment for placement-in design units

int16 YPlacement Vertical adjustment for placement-in design units

int16 XAdvance Horizontal adjustment for advance-in design units (only used for horizontal
writing)

int16 YAdvance Vertical adjustment for advance-in design units (only used for vertical writing)

OffsetOffset XPlaDevice OffsetOffset to Device table for horizontal placement-measured from beginning
of PosTable (may be NULL)

OffsetOffset YPlaDevice OffsetOffset to Device table for vertical placement-measured from beginning of
PosTable (may be NULL)

OffsetOffset XAdvDevice OffsetOffset to Device table for horizontal advance-measured from beginning of
PosTable (may be NULL)

OffsetOffset YAdvDevice OffsetOffset to Device table for vertical advance-measured from beginning of
PosTable (may be NULL)

A data format (ValueFormat), usually declared at the beginning of each GPOS subtable, defines the types of
positioning adjustment data that ValueRecords specify. Usually, the same ValueFormat applies to every
ValueRecord defined in the particular GPOS subtable.

The ValueFormat determines whether the ValueRecords:

• Apply to placement, advance, or both.

• Apply to the horizontal position (X coordinate), the vertical position (Y coordinate), or both.

• May refer to one or more Device tables for any of the specified values.

Each one-bit in the ValueFormat corresponds to a field in the ValueRecord and increases the size of the
ValueRecord by 2 bytes. A ValueFormat of 0x0000 corresponds to an empty ValueRecord, which indicates no
positioning changes.

To identify the fields in each ValueRecord, the ValueFormat uses the bit settings shown below. To specify
multiple fields with a ValueFormat, the bit settings of the relevant fields are added with a logical OR operation.

For example, to adjust the left-side bearing of a glyph, the ValueFormat will be 0x0001, and the ValueRecord
will define the XPlacement value. To adjust the advance width of a different glyph, the ValueFormat will be
0x0004, and the ValueRecord will describe the XAdvance value. To adjust both the XPlacement and
XAdvance of a set of glyphs, the ValueFormat will be 0x0005, and the ValueRecord will specify both values in
the order they are listed in the ValueRecord definition.

ValueFormat bit enumeration (indicates which fields are present)

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 183

Mask Name Description

0x0001 XPlacement Includes horizontal adjustment for placement

0x0002 YPlacement Includes vertical adjustment for placement

0x0004 XAdvance Includes horizontal adjustment for advance

0x0008 YAdvance Includes vertical adjustment for advance

0x0010 XPlaDevice Includes horizontal Device table for placement

0x0020 YPlaDevice Includes vertical Device table for placement

0x0040 XAdvDevice Includes horizontal Device table for advance

0x0080 YAdvDevice Includes vertical Device table for advance

0xF000 Reserved For future use

Anchor Table

A GPOS table uses anchor points to position one glyph with respect to another. Each glyph defines an anchor
point, and the text-processing client attaches the glyphs by aligning their corresponding anchor points.

To describe an anchor point, an Anchor table can use one of three formats. The first format uses design units
to specify a location for the anchor point. The other two formats refine the location of the anchor point using
contour points (Format 2) or Device tables (Format 3).

Anchor Table: Format 1

AnchorFormat1 consists of a format identifier (AnchorFormat) and a pair of design unit coordinates
(XCoordinate and YCoordinate) that specify the location of the anchor point. This format has the benefits of
small size and simplicity, but the anchor point cannot be hinted to adjust its position for different device
resolutions.

Example 15 at the end of this clause uses AnchorFormat1.

AnchorFormat1 table: Design units only

Value Type Description

uint16 AnchorFormat Format identifier-format = 1

int16 XCoordinate Horizontal value-in design units

int16 YCoordinate Vertical value-in design units

Anchor Table: Format 2

ISO/IEC FDIS 14496-22:2006(E)

184 © ISO/IEC 2006 — All rights reserved

Like AnchorFormat1, AnchorFormat2 specifies a format identifier (AnchorFormat) and a pair of design unit
coordinates for the anchor point (Xcoordinate and Ycoordinate).

For fine-tuning the location of the anchor point, AnchorFormat2 also provides an index to a glyph contour point
(AnchorPoint) that is on the outline of a glyph (AnchorPoint). Hinting can be used to move the AnchorPoint. In
the rendered text, the AnchorPoint will provide the final positioning data for a given ppem size.

Example 16 at the end of this clause uses AnchorFormat2.

AnchorFormat2 table: Design units plus contour point

Value Type Description

uint16 AnchorFormat Format identifier-format = 2

int16 XCoordinate Horizontal value-in design units

int16 YCoordinate Vertical value-in design units

uint16 AnchorPoint Index to glyph contour point

Anchor Table: Format 3

Like AnchorFormat1, AnchorFormat3 specifies a format identifier (AnchorFormat) and locates an anchor point
(Xcoordinate and Ycoordinate). And, like AnchorFormat 2, it permits fine adjustments to the coordinate values.
However, AnchorFormat3 uses Device tables, rather than a contour point, for this adjustment.

With a Device table, a client can adjust the position of the anchor point for any font size and device resolution.
AnchorFormat3 can specify Offsets to Device tables for the the X coordinate (XDeviceTable) and the Y
coordinate (YDeviceTable). If only one coordinate requires adjustment, the Offset to the Device table may be
set to NULL for the other coordinate.

Example 17 at the end of the clause shows an AnchorFormat3 table.

AnchorFormat3 table: Design units plus Device tables

Value Type Description

uint16 AnchorFormat Format identifier-format = 3

int16 XCoordinate Horizontal value-in design units

int16 YCoordinate Vertical value-in design units

Offset XDeviceTable Offset to Device table for X coordinate- from beginning of Anchor table (may be
NULL)

Offset YDeviceTable Offset to Device table for Y coordinate- from beginning of Anchor table (may be
NULL)

Mark Array

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 185

The MarkArray table defines the class and the anchor point for a mark glyph. Three GPOS subtables-
MarkToBase, MarkToLigature, and MarkToMark Attachment-use the MarkArray table to specify data for
attaching marks.

The MarkArray table contains a count of the number of mark records (MarkCount) and an array of those
records (MarkRecord). Each mark record defines the class of the mark and an Offset to the Anchor table that
contains data for the mark.

A class value can be 0 (zero), but the MarkRecord must explicitly assign that class value (this differs from the
ClassDef table, in which all glyphs not assigned class values automatically belong to Class 0). The GPOS
subtables that refer to MarkArray tables use the class assignments for indexing zero-based arrays that contain
data for each mark class.

In Example 18 at the end of the clause, a MarkArray table and two MarkRecords define two mark classes.

MarkArray table

Value Type Description

uint16 MarkCount Number of MarkRecords

struct MarkRecord
[MarkCount]

Array of MarkRecords-in Coverage order

MarkRecord

Value Type Description

uint16 Class Class defined for this mark

Offset MarkAnchor Offset to Anchor table-from beginning of MarkArray table

5.3.3.5 GPOS Subtable Examples

The rest of this clause describes examples of all the GPOS subtable formats, including each of the three
formats available for contextual positioning. All the examples reflect unique parameters described below, but
the samples provide a useful reference for building subtables specific to other situations.

All the examples have three columns showing hex data, source, and comments.

Example 1: GPOS Header Table

Example 1 shows a typical GPOS Header table definition with Offsets to a ScriptList, FeatureList, and
LookupList.

Example 1

Hex Data Source Comments

 GPOSHeader GPOSHeader table definition

ISO/IEC FDIS 14496-22:2006(E)

186 © ISO/IEC 2006 — All rights reserved

TheGPOSHeader

00010000 0x00010000 Version

000A TheScriptList Offset to ScriptList table

001E TheFeatureList Offset to FeatureList table

002C TheLookupList Offset to LookupList table

Example 2: SinglePosFormat1 Subtable

Example 2 uses the SinglePosFormat1 subtable to lower the Y placement of subscript glyphs in a font. The
LowerSubscriptsSubTable defines one Coverage table, called LowerSubscriptsCoverage, which lists one
range of glyph indices for the numeral/numeric subscript glyphs. The subtable's ValueFormat setting indicates
that the ValueRecord specifies only the YPlacement value, lowering each subscript glyph by 80 design units.

Example 2

Hex
Data

Source Comments

 SinglePosFormat1
LowerSubscriptsSubTable SinglePos subtable definition

0001 1 PosFormat

0008 LowerSubscriptsCoverage Offset to Coverage table

0002 0x0002 ValueFormat, YPlacement,Value[0], move Y position down

FFB0 -80

CoverageFormat2
LowerSubscriptsCoverage Coverage table definition

0002 2 CoverageFormat

0001
1 RangeCount

RangeRecord[0]

01B3 ZeroSubscriptGlyphID Start, first glyphID

01BC NineSubscriptGlyphID End, last glyphID

0000 0 StartCoverageIndex

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 187

Example 3: SinglePosFormat2 Subtable

This example uses a SinglePosFormat2 subtable to adjust the spacing of three dash glyphs by different
amounts. The em dash spacing changes by 10 units, the en dash spacing changes by 25 units, and spacing
of the standard dash changes by 50 units.

The DashSpacingSubTable contains one Coverage table with three dash glyph indices, plus an array of
ValueRecords, one for each covered glyph. The ValueRecords use the same ValueFormat to modify the
XPlacement and XAdvance values of each glyph. The ValueFormat bit setting of 0x0005 is produced by
adding the XPlacement and XAdvance bit settings.

Example 3

Hex Data Source Comments

 SinglePosFormat2
DashSpacingSubTable SinglePos subtable definition

0002 2 PosFormat

0014 DashSpacingCoverage Offset to Coverage table

0005 0x0005 ValueFormat for XPlacement and XAdvance

0003 3 ValueCount Value[0], for dash glyph

0032 50 XPlacement

0032 50 XAdvance
Value[1], for en dash glyph

0019 25 XPlacement

0019 25 XAdvance
Value[2], for em dash glyph

000A 10 XPlacement

000A 10 XAdvance

 CoverageFormat1
DashSpacingCoverage Coverage table definition

0001 1 CoverageFormat

0003 3 GlyphCount

004F DashGlyphID GlyphArray[0]

ISO/IEC FDIS 14496-22:2006(E)

188 © ISO/IEC 2006 — All rights reserved

0125 EnDashGlyphID GlyphArray[1]

0129 EmDashGlyphID GlyphArray[2]

Example 4: PairPosFormat1 Subtable

Example 4 uses a PairPosFormat1 subtable to kern two glyph pairs - "Po" and "To" - by adjusting the
XAdvance of the first glyph and the XPlacement of the second glyph. Two ValueFormats are defined, one for
each glyph. The subtable contains a Coverage table that lists the index of the first glyph in each pair. It also
contains an offset to a PairSet table for each covered glyph.

A PairSet table defines an array of PairValueRecords to specify all the glyph pairs that contain a covered
glyph as their first component. In this example, the PPairSet table has one PairValueRecord that identifies the
second glyph in the "Po" pair and two ValueRecords, one for the first glyph and one for the second. The
TPairSet table also has one PairValueRecord that lists the second glyph in the "To" pair and two
ValueRecords, one for each glyph.

Example 4

Hex Data Source Comments

 PairPosFormat1
PairKerningSubTable PairPos subtable definition

0001 1 PosFormat

001E PairKerningCoverage Offset to Coverage table

0004 0x0004 ValueFormat1
XAdvance only

0001 0x0001 ValueFormat2
XPlacement only

0002 2 PairSetCount

000E PPairSetTable PairSet[0]

0016 TPairSetTable PairSet[1]

 PairSetTable
PPairSetTable PairSet table definition

0001 1 PairValueCount, one pair in set PairValueRecord[0]

0059 LowercaseOGlyphID SecondGlyph

FFE2 -30 Value 1, XAdvance adjustment for first glyph

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 189

FFEC -20 Value 2, XPlacement adjustment for second glyph

 PairSetTable
PairSetTable PairSet table definition

0001 1 PairValueCount one pair in set PairValueRecord[0]

0059 LowercaseOGlyphID SecondGlyph

FFD8 -40 Value1 XAdvance adjustment for first glyph

FFE7 -25 Value 2 XPlacement adjustment for second glyph

 CoverageFormat1
PairKerningCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

002D UppercasePGlyphID GlyphArray[0]

0031 UppercaseTGlyphID GlyphArray[1]

Example 5: PairPosFormat2 Subtable

The PairPosFormat2 subtable in this example defines pairs composed of two glyph classes. Two ClassDef
tables are defined, one for each glyph class. The first glyph in each pair is in a class of lowercase glyphs with
diagonal shapes (v, w, y), defined Class1 in the LowercaseClassDef table. The second glyph in each pair is in
a class of punctuation glyphs (comma and period), defined in Class1 in the PunctuationClassDef table. The
Coverage table only lists the indices of the glyphs in the LowercaseClassDef table since they occupy the first
position in the pairs.

The subtable defines two Class1Records for the classes defined in LowecaseClassDef, including Class0.
Each record, in turn, defines a Class2Record for each class defined in PunctuationClassDef, including Class0.
The Class2Records specify the positioning adjustments for the glyphs.

The pairs are kerned by reducing the XAdvance of the first glyph by 50 design units. Because no positioning
change applies to the second glyph, its ValueFormat2 is set to 0, to indicate that Value2 is empty for each pair.

Since no pairs begin with Class0 or Class2 glyphs, all the ValueRecords referenced in Class1Record[0]
contain values of 0 or are empty. However, Class1Record[1] does define an XAdvance value in its
Class2Record[1] for kerning all pairs that contain a Class1 glyph followed by a Class2 glyph.

Example 5

Hex Data Source Comments

ISO/IEC FDIS 14496-22:2006(E)

190 © ISO/IEC 2006 — All rights reserved

 PairPosFormat2
PunctKerningSubTable PairPos subtable definition

0002 2 PosFormat

0018 PunctKerningCoverage Offset to Coverage table

0004 0x0004 ValueFormat1 XAdvance only

0000 0 ValueFormat2 no ValueRecord for second glyph

0022 LowercaseClassDef Offset to ClassDef1 table for first class in pair

0032 PunctuationClassDef Offset to ClassDef2 table for second class in pair

0002 2 Class1Count

0002 2 Class2Count
Class1Record[0], no contexts begin with Class0
Class2Record[0]

0000 0 Value1- no change for first glyph, Value2 no ValueRecord for second glyph
Class2Record[1]

0000 0 Value1- no change for first glyph, Value2 no ValueRecord for second glyph
Class1Record[1], for contexts beginning with Class1
Class2Record[0] no contexts with Class0 as second glyph

0000 0 Value1-no change for first glyph, Value2-no ValueRecord for second glyph
Class2Record[1]contexts with Class1 as second glyph

FFCE -50 Value1- move punctuation glyph left, Value2- no ValueRecord for second
glyph

 CoverageFormat1
PunctKerningCoverage Coverage table definition

0001 1 CoverageFormat, lists

0003 3 GlyphCount

0046 LowercaseVGlyphID GlyphArray[0]

0047 LowercaseWGlyphID GlyphArray[1]

0049 LowercaseYGlyphID GlyphArray[2]

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 191

 ClassDefFormat2
LowercaseClassDef ClassDef table definition

0002 2 ClassFormat

0002 2 ClassRangeCount
ClassRangeRecord[0]

0046 LowercaseVGlyphID Start

0047 LowercaseWGlyphID End

0001 1 Class
ClassRangeRecord[1]

0049 LowercaseYGlyphID Start

0049 LowercaseYGlyphID End

0001 1 Class

 ClassDefFormat2
PunctuationClassDef

ClassDef table definition

0002 2 ClassFormat

0001 1 ClassRangeCount
ClassRangeRecord[0]

006A PeriodPunctGlyphID Start

006B CommaPunctGlyphID End

0001 1 Class

Example 6: CursivePosFormat1 Subtable

In Example 6, the Urdu language system uses a CursivePosFormat1 subtable to attach glyphs along a
diagonal baseline that descends from right to left. Two glyphs are defined with attachment data and listed in
the Coverage table-the Kaf and Ha glyphs. For each glyph, the subtable contains an EntryExitRecord that
defines Offsets to two Anchor tables, an entry attachment point, and an exit attachment point. Each Anchor
table defines X and Y coordinate values. To render Urdu down and diagonally, the entry point's Y coordinate
is above the baseline and the exit point's Y coordinate is located below the baseline.

ISO/IEC FDIS 14496-22:2006(E)

192 © ISO/IEC 2006 — All rights reserved

Example 6

Hex
Data

Source Comments

 CursivePosFormat1
DiagonalWritingSubTable CursivePos subtable definition

0001 1 PosFormat

000E DiagonalWritingCoverage Offset to Coverage table

0002 2 EntryExitCount
EntryExitRecord[0] for Kaf glyph

0016 KafEntryAnchor Offset to EntryAnchor table

001C KafExitAnchor Offset to ExitAnchor table
EntryExitRecord[1] for Ha glyph

0022 HaEntryAnchor Offset to EntryAnchor table

0028 HaExitAnchor Offset to ExitAnchor table

 CoverageFormat1
DiagonalWritingCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

0203 KafGlyphID GlyphArray[0]

027E HaGlyphID GlyphArray[1]

 AnchorFormat1
KafEntryAnchor Anchor table definition

0001 1 AnchorFormat

05DC 1500 XCoordinate

002C 44 YCoordinate

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 193

 AnchorFormat1
KafExitAnchor Anchor table definition

0001 1 AnchorFormat

0000 0 XCoordinate

FFEC -20 YCoordinate

 AnchorFormat1
HaEntryAnchor Anchor table definition

0001 1 AnchorFormat

05DC 1500 XCoordinate

002C 44 YCoordinate

 AnchorFormat1
HaExitAnchor Anchor table definition

0001 1 AnchorFormat

0000 0 XCoordinate

FFEC -20 Ycoordinate

Example 7: MarkBasePosFormat1 Subtable

The MarkBasePosFormat1 subtable in Example 7 defines one Arabic base glyph, Tah, and two Arabic mark
glyphs: a fathatan mark above the base glyph, and a kasra mark below the base glyph. The
BaseGlyphsCoverage table lists the base glyph, and the MarkGlyphsCoverage table lists the mark glyphs.

Each mark is also listed in the MarkArray, along with its attachment point data and a mark Class value. The
MarkArray defines two mark classes: Class0 consists of marks located above base glyphs, and Class1
consists of marks located below base glyphs.

The BaseArray defines attachment data for base glyphs. In this array, one BaseRecord is defined for the Tah
glyph with Offsets to two BaseAnchor tables, one for each class of marks. AboveBaseAnchor defines an
attachment point for marks placed above the Tah base glyph, and BelowBaseAnchor defines an attachment
point for marks placed below it.

ISO/IEC FDIS 14496-22:2006(E)

194 © ISO/IEC 2006 — All rights reserved

Example 7

Hex
Data

Source Comments

 MarkBasePosFormat1
MarkBaseAttachSubTable MarkBasePos subtable definition

0001 1 PosFormat

000C MarkGlyphsCoverage Offset to MarkCoverage table

0014 BaseGlyphsCoverage Offset to BaseCoverage table

0002 2 ClassCount

001A MarkGlyphsArray Offset to MarkArray table

0030 BaseGlyphsArray Offset to BaseArray table

 CoverageFormat1
MarkGlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

0333 fathatanMarkGlyphID GlyphArray[0]

033F kasraMarkGlyphID GlyphArray[1]

 CoverageFormat1
BaseGlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

0190 tahBaseGlyphID GlyphArray[0]

 MarkArray
MarkGlyphsArray MarkArray table definition

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 195

0002 2 MarkCount
MarkRecord[0] in CoverageIndex order

0000 0 Class, for marks over base

000A fathatanMarkAnchor Offset to Anchor table
MarkRecord[1]

0001 1 Class, for marks under

0010 kasraMarkAnchor Offset to Anchor table

 AnchorFormat1
fathatanMarkAnchor Anchor table definition

0001 1 AnchorFormat

015A 346 XCoordinate

FF9E -98 YCoordinate

 AnchorFormat1
kasraMarkAnchor Anchor table definition

0001 1 AnchorFormat

0105 261 XCoordinate

0058 88 YCoordinate

 BaseArray
BaseGlyphsArray BaseArray table definition

0001 1 BaseCount
BaseRecord[0]

0006 AboveBaseAnchor BaseAnchor[0]

000C BelowBaseAnchor BaseAnchor[1]

 AnchorFormat1
AboveBaseAnchor Anchor table definition

0001 1 AnchorFormat

ISO/IEC FDIS 14496-22:2006(E)

196 © ISO/IEC 2006 — All rights reserved

033E 830 XCoordinate

0640 1600 YCoordinate

 AnchorFormat1
BelowBaseAnchor Anchor table definition

0001 1 AnchorFormat

033E 830 XCoordinate

FFAD -83 Ycoordinate

Example 8: MarkLigPosFormat1 Subtable

Example 8 uses the MarkLigPosFormat1 subtable to attach marks to a ligature glyph in the Arabic script. The
hypothetical ligature is composed of three glyph components: a Lam (initial form), a meem (medial form), and
a jeem (medial form). Accent marks are defined for the first two components: the sukun accent is positioned
above lam, and the kasratan accent is placed below meem.

The LigGlyphsCoverage table lists the ligature glyph and the MarkGlyphsCoverage table lists the two accent
marks. Each mark is also listed in the MarkArray, along with its attachment point data and a mark Class value.
The MarkArray defines two mark classes: Class0 consists of marks located above base glyphs, and Class1
consists of marks located below base glyphs.

The LigGlyphsArray has an offset to one LigatureAttach table for the covered ligature glyph. This table, called
LamWithMeemWithJeemLigAttach, defines a count and array of the component glyphs in the ligature. Each
ComponentRecord defines offsets to two Anchor tables, one for each mark class.

In the example, the first glyph component, lam, specifies a high attachment point for positioning accents
above, but does not specify a low attachment point for placing accents below. The second glyph component,
meem, defines a low attachment point for placing accents below, but not above. The third component, jeem,
has no attachment points since the example defines no accents for it.

Example 8

Hex
Data

Source Comments

 MarkLigPosFormat1
MarkLigAttachSubTable

MarkLigPos subtable definition

0001 1 PosFormat

000C MarkGlyphsCoverage Offset to MarkCoverage table

0014 LigGlyphsCoverage Offset to LigatureCoverage table

0002 2 ClassCount

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 197

001A MarkGlyphsArray Offset to MarkArray table

0030 LigGlyphsArray Offset to LigatureArray table

 CoverageFormat1
MarkGlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

033C sukunMarkGlyphID GlyphArray[0]

033F kasratanMarkGlyphID GlyphArray[1]

 CoverageFormat1
LigGlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

0234 LamWithMeemWithJeem
LigatureGlyphID

GlyphArray[0]

 MarkArray
MarkGlyphsArray MarkArray table definition

0002 2 MarkCount
MarkRecord[0] in CoverageIndex order

0000 0 Class, for marks above components

000A sukunMarkAnchor Offset to Anchor table
MarkRecord[1]

0001 1 Class, for marks below components

0010 kasratanMarkAnchor Offset to Anchor table

 AnchorFormat1
sukunMarkAnchor Anchor table definition

ISO/IEC FDIS 14496-22:2006(E)

198 © ISO/IEC 2006 — All rights reserved

0001 1 AnchorFormat

015A 346 XCoordinate

FF9E -98 YCoordinate

 AnchorFormat1
kasratanMarkAnchor Anchor table definition

0001 1 AnchorFormat

0105 261 XCoordinate

01E8 488 YCoordinate

 LigatureArray
LigGlyphsArray

LigatureArray table definition

0001 1 LigatureCount

0004 LamWithMeemWithJeemLigAttach Offset to LigatureAttach table

 LigatureAttach
LamWithMeemWithJeemLigAttach

LigatureAttach table definition

0003 3 ComponentCount
ComponentRecord[0]
Right-to-Left text order

000E AboveLamAnchor Offset to LigatureAnchor table ordered by mark class value for Class0
marks (above)

0000 NULL Offset to LigatureAnchor table
no attachment points for Class1 marks
ComponentRecord[1]

0000 NULL Offset to LigatureAnchor table no attachment points for Class0 marks

0014 BelowMeemAnchor Offset to LigatureAnchor table for Class1 marks (below)
ComponentRecord[2]

0000 NULL Offset to LigatureAnchor table no attachment points for Class0 marks

0000 NULL Offset to LigatureAnchor table no attachment points for Class1 marks

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 199

 AnchorFormat1
AboveLamAnchor Anchor table definition

0001 1 AnchorFormat

0271 625 XCoordinate

0708 1800 YCoordinate

 AnchorFormat1
BelowMeemAnchor Anchor table definition

0001 1 AnchorFormat

0178 376 XCoordinate

FE90 -368 Ycoordinate

Example 9: MarkMarkPosFormat1 Subtable

The MarkMarkPosFormat1 subtable in Example 9 defines two Arabic marks glyphs. The hanza mark, the
base mark (Mark2), is identified in the Mark2GlyphsCoverage table. The damma mark, the attaching mark
(Mark1), is defined in the Mark1GlyphsCoverage table.

Each Mark1 glyph is also listed in the Mark1Array, along with its attachment point data and a mark Class
value. The Mark1GlyphsArray defines one mark class, Class0, that consists of marks located above Mark2
base glyphs. The Mark1GlyphsArray contains an Offset to a dammaMarkAnchor table to specify the
coordinate of the damma mark's attachment point.

The Mark2GlyphsArray table defines a count and an array of Mark2Records, one for each covered Mark2
base glyph. Each record contains an Offset to a Mark2Anchor table for each Mark1 class. One Anchor table,
AboveMark2Anchor, specifies a coordinate value for attaching the damma mark above the hanza base mark.

Example 9

Hex
Data

Source Comments

 MarkMarkPosFormat1
MarkMarkAttachSubTable MarkBasePos subtable definition

0001 1 PosFormat

000C Mark1GlyphsCoverage Offset to Mark1Coverage table

0012 Mark2GlyphsCoverage Offset to Mark2Coverage table

ISO/IEC FDIS 14496-22:2006(E)

200 © ISO/IEC 2006 — All rights reserved

0001 1 ClassCount

0018 Mark1GlyphsArray Offset to Mark1Array table

0024 Mark2GlyphsArray Offset to Mark2Array table

 CoverageFormat1
Mark1GlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

0296 dammaMarkGlyphID GlyphArray[0]

 CoverageFormat1
Mark2GlyphsCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

0289 hanzaMarkGlyphID GlyphArray[1]

 MarkArray
Mark1GlyphsArray

MarkArray table definition

0001 1 MarkCount
MarkRecord[0] in CoverageIndex order

0000 0 Class for marks above base mark

0006 dammaMarkAnchor Offset to Anchor table

 AnchorFormat1
dammaMarkAnchor Anchor table definition

0001 1 AnchorFormat

00BD 189 XCoordinate

FF99 -103 YCoordinate

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 201

 Mark2Array
Mark2GlyphsArray Mark2Array table definition

0001 1 Mark2Count
Mark2Record[0]

0004 AboveMark2Anchor Offset to Anchor table[0]

 AnchorFormat1
AboveMark2Anchor Anchor table definition

0001 1 AnchorFormat

00DD 221 XCoordinate

012D 301 Ycoordinate

Example 10: ContextPosFormat1 Subtable and PosLookupRecord

Example 10 uses a ContextPosFormat1 subtable to adjust the spacing between three Arabic glyphs in a word.
The context is the glyph sequence (from right to left): heh (initial form), thal (final form), and heh (isolated
form). In the rendered word, the first two glyphs are connected, but the last glyph (the isolated form of heh), is
separate. This subtable reduces the amount of space between the last glyph and the rest of the word.

The subtable contains a WordCoverage table that lists the first glyph in the word, heh (initial), and one
PosRuleSet table, called WordPosRuleSet, that defines all contexts beginning with this covered glyph.

The WordPosRuleSet contains one PosRule that describes a word context of three glyphs and identifies the
second and third glyphs (the first glyph is identified by the WordPosRuleSet). When a text-processing client
locates this context in text, it applies a SinglePos lookup (not shown in the example) at position 2 to reduce
the spacing between the glyphs.

Example 10

Hex Data Source Comments

 ContextPosFormat1
MoveHehInSubtable ContextPos subtable definition

0001 1 PosFormat

0008 WordCoverage Offset to Coverage table

0001 1 PosRuleSetCount

000E WordPosRuleSet Offset to PosRuleSet[0] table

ISO/IEC FDIS 14496-22:2006(E)

202 © ISO/IEC 2006 — All rights reserved

CoverageFormat1
WordCoverage

Coverage table Offset

0001 1 CoverageFormat

0001 1 GlyphCount

02A6 hehInitialGlyphID GlyphArray[0]

 PosRuleSet
WordPosRuleSet

PosRuleSet table definition

0001 1 PosRuleCount

0004 WordPosRule Offset to PosRule[0] table

 PosRule
WordPosRule PosRule table definition

0003 3 GlyphCount

0001 1 PosCount

02DD thalFinalGlyphID Input[1]

02C6 hehIsolatedGlyphID Input[0]
PosLookupRecord[0]

0002 2 SequenceIndex

0001 1 LookupListIndex

Example 11: ContextPosFormat2 Subtable

The ContextPosFormat2 subtable in Example 11 defines context strings for five glyph classes: Class1
consists of uppercase glyphs that overhang and create a wide open space on their right side; Class2 consists
of uppercase glyphs that overhang and create a narrow space on their right side; Class3 contains lowercase
x-height vowels; and Class4 contains accent glyphs placed over the lowercase vowels. The rest of the glyphs
in the font fall into Class0.

The MoveAccentsSubtable defines two similar context strings. The first consists of a Class1 uppercase glyph
followed by a Class3 lowercase vowel glyph with a Class4 accent glyph over the vowel. When this context is
found in the text, the client lowers the accent glyph over the vowel so that it does not collide with the
overhanging glyph shape. The second context consists of a Class2 uppercase glyph, followed by a Class3

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 203

lowercase vowel glyph with a Class4 accent glyph over the vowel. When this context is found in the text, the
client increases the advance width of the uppercase glyph to expand the space between it and the accented
vowel.

The MoveAccents subtable defines a MoveAccentsCoverage table that identifies the first glyphs in the two
contexts and Offsets to five PosClassSet tables, one for each class defined in the ClassDef table. Since no
contexts begin with Class0, Class3, or Class4 glyphs, the Offsets to the PosClassSet tables for these classes
are NULL. PosClassSet[1] defines all contexts beginning with Class1 glyphs; it is called
UCWideOverhangPosClass1Set. PosClassSet[2] defines all contexts beginning with Class2 glyphs, and it is
called UCNarrowOverhangPosClass1Set.

Each PosClassSet defines one PosClassRule. The UCWideOverhangPosClass1Set uses the
UCWideOverhangPosClassRule to specify the first context. The first class in this context string is identified by
the PosClassSet that includes a PosClassRule, in this case Class1. The PosClassRule table lists the second
and third classes in the context as Class3 and Class4. A SinglePos Lookup (not shown) lowers the accent
glyph in position 3 in the context string.

The UCNarrowOverhangPosClass1Set defines the UCNarrowOverhangPosClassRule for the second context.
This PosClassRule is identical to the UCWideOverhangPosClassRule, except that the first class in the context
string is a Class2 lowercase glyph. A SinglePos Lookup (not shown) increases the advance width of the
overhanging uppercase glyph in position 0 in the context string.

Example 11

Hex
Data

Source Comments

 ContextPosFormat2
MoveAccentsSubtable ContextPos subtable definition

0002 2 PosFormat

0012 MoveAccentsCoverage Offset to Coverage table

0020 MoveAccentsClassDef Offset to ClassDef

0005 5 PosClassSetCnt

0000 NULL PosClassSet[0], no contexts begin with Class0 glyphs

0060 UCWideOverhangPosClass1Set PosClassSet[1] contexts beginning with Class1 glyphs

0070 UCNarrowOverhangPosClass2Set PosClassSet[2] context beginning with Class2 glyphs

0000 NULL PosClassSet[3], no contexts begin with Class3 glyphs

0000 NULL PosClassSet[4], no contexts begin with Class4 glyphs

 CoverageFormat1
MoveAccentsCoverage Coverage table definition

ISO/IEC FDIS 14496-22:2006(E)

204 © ISO/IEC 2006 — All rights reserved

0001 1 CoverageFormat

0005 5 GlyphCount

0029 UppercaseFGlyphID GlyphArray[0]

0033 UppercasePGlyphID GlyphArray[1]

0037 UppercaseTGlyphID GlyphArray[2]

0039 UppercaseVGlyphID GlyphArray[3]

003A UppercaseWGlyphID GlyphArray[4]

 ClassDefFormat2
MoveAccentsClassDef

ClassDef table definition defines five classes = 0 (all else), 1 (T, V, W:
UCUnderhang), 2 (F, P: UCOverhang), 3 (a, e, I, o, u: LCVowels), 4
(tilde, umlaut)

0002 2 ClassFormat, ranges

000A 10 ClassRangeCount
ClassRangeRecord[0]

0029 UppercaseFGlyphID Start

0029 UppercaseFGlyphID End

0002 2 Class
ClassRangeRecord[1]

0033 UppercasePGlyphID Start

0033 UppercasePGlyphID End

0002 2 Class
ClassRangeRecord[2]

0037 UppercaseTGlyphID Start

0037 UppercaseTGlyphID End

0001 1 Class
ClassRangeRecord[3]

0039 UppercaseVGlyphID Start

003A UppercaseWGlyphID End

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 205

0001 1 Class
ClassRangeRecord[4]

0042 LowercaseAGlyphID Start

0042 LowercaseAGlyphID End

0003 3 Class
ClassRangeRecord[5]

0046 LowercaseEGlyphID Start

0046 LowercaseEGlyphID End

0003 3 Class
ClassRangeRecord[6]

004A LowercaseIGlyphID Start

004A LowercaseIGlyphID End

0003 3 Class
ClassRangeRecord[7]

0051 LowercaseOGlyphID Start

0051 LowercaseOGlyphID End

0003 3 Class
ClassRangeRecord[8]

0056 LowercaseUGlyphID Start

0056 LowercaseUGlyphID End

0003 3 Class
ClassRangeRecord[9]

00F5 TildeAccentGlyphID Start

00F6 UmlautAccentGlyphID End

0004 4 Class

 PosClassSet
UCWideOverhangPosClass1Set PosClassSet table definition

ISO/IEC FDIS 14496-22:2006(E)

206 © ISO/IEC 2006 — All rights reserved

0001 1 PosClassRuleCnt

0004 UCWideOverhangPosClassRule PosClassRule[0]

 PosClassRule
UCWideOverhangPosClassRule PosClassRule table definition

0003 3 GlyphCount

0001 1 PosCount

0003 3 Class[1], lowercase vowel

0004 4 Class[2], accent
PosLookupRecord[0]

0002 2 SequenceIndex

0001 1 LookupListIndex, lower the accent

 PosClassSet
UCNarrowOverhangPosClass2Set PosClassSet table definition

0001 1 PosClassRuleCnt

0004 UCNarrowOverhangPosClassRule PosClassRule[0]

 PosClassRule
UCNarrowOverhangPosClassRule PosClassRule table definition

0003 3 GlyphCount

0001 1 PosCount

0003 3 Class[1], lowercase vowel

0004 4 Class[2], accent
PosLookupRecord[0]

0000 0 SequenceIndex

0002 2 LookupListIndex
increase overhang advance width

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 207

Example 12: ContextPosFormat3 Subtable

Example 12 uses a ContextPosFormat3 subtable to lower the position of math signs in math equations
consisting of a lowercase descender or x-height glyph, a math sign glyph, and any lowercase glyph. Format3
is better to use for this context than the class-based Format2 because the sets of covered glyphs for positions
0 and 2 overlap.

The LowerMathSignsSubtable contains Offsets to three Coverage tables (XhtDescLCCoverage,
MathSignCoverage, and LCCoverage), one for each position in the context glyph string. When the client finds
the context in the text stream, it applies the PosLookupRecord data at position 1 and repositions the math sign.

Example 12

Hex
Data

Source Comments

 ContextPosFormat3
LowerMathSignsSubtable

ContextPos subtable definition

0003 3 PosFormat

0003 3 GlyphCount

0001 1 PosLookup

0010 XhtDescLCCoverage Offset to Coverage[0] table

003C MathSignCoverage Offset to Coverage[1] table

0044 LCCoverage Offset to Coverage[2] table
PosLookupRecord[0]

0001 1 SequenceIndex

0001 1 LookupListIndex

 CoverageFormat1
XhtDescLCCoverage

Coverage table definition

0001 1 CoverageFormat

0014 20 GlyphCount

0033 LCaGlyphID GlyphArray[0]

0035 LCcGlyphID GlyphArray[1]

0037 LCeGlyphID GlyphArray[2]

ISO/IEC FDIS 14496-22:2006(E)

208 © ISO/IEC 2006 — All rights reserved

0039 LCgGlyphID GlyphArray[3]

003B LCiGlyphID GlyphArray[4]

003C LCjGlyphID GlyphArray[5]

003F LCmGlyphID GlyphArray[6]

0040 LCnGlyphID GlyphArray[7]

0041 LCoGlyphID GlyphArray[8]

0042 LCpGlyphID GlyphArray[9]

0043 LCqGlyphID GlyphArray[10]

0044 LCrGlyphID GlyphArray[11]

0045 LCsGlyphID GlyphArray[12]

0046 LCtGlyphID GlyphArray[13]

0047 LCuGlyphID GlyphArray[14]

0048 LCvGlyphID GlyphArray[15]

0049 LCwGlyphID GlyphArray[16]

004A LCxGlyphID GlyphArray[17]

004B LCyGlyphID GlyphArray[18]

004C LCzGlyphID GlyphArray[19]

 CoverageFormat1
MathSignCoverage Coverage table definition

0001 1 CoverageFormat

0002 2 GlyphCount

011E EqualsSignGlyphID GlyphArray[0]

012D PlusSignGlyphID GlyphArray[1]

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 209

 CoverageFormat2
LCCoverage Coverage table definition

0002 2 CoverageFormat

0001 1 RangeCount
RangeRecord[0]

0033 LCaGlyphID Start

004C LCzGlyphID End

0000 0 StartCoverageIndex

Example 13: PosLookupRecord

The PosLookupRecord in Example 13 identifies a lookup to apply at the second glyph position in a context
glyph string.

Example 13

Hex Data Source Comments

 PosLookupRecord
PosLookupRecord[0]

PosLookupRecord definition

0001 1 SequenceIndex for second glyph position

0001 1 LookupListIndex, apply this lookup to second glyph position

Example 14: ValueFormat Table and ValueRecord

Example 14 demonstrates how to specify positioning values in the GPOS table. Here, a SinglePosFormat1
subtable defines the ValueFormat and ValueRecord. The ValueFormat bit setting of 0x0099 says that the
corresponding ValueRecord contains values for a glyph's XPlacement and YAdvance. Device tables specify
pixel adjustments for these values at font sizes from 11 ppem to 15 ppem.

Example 14

Hex Data Source Comments

 SinglePosFormat1
OnesSubtable SinglePos subtable definition

0001 1 PosFormat

000E Cov Offset to Coverage table

ISO/IEC FDIS 14496-22:2006(E)

210 © ISO/IEC 2006 — All rights reserved

0099 0x0099 ValueFormat, for XPlacement, YAdvance, XPlaDevice, YAdvaDevice Value

0050 80 Xplacement value

00D2 210 Yadvance value

0018 XPlaDeviceTable Offset to XPlaDevice table

0020 YAdvDeviceTable Offset to YAdvDevice table

 CoverageFormat2
Cov Coverage table definition

0002 2 CoverageFormat

0001 1 RangeCount
RangeRecord[0]

00C8 200 Start, first glyph ID in range

00D1 209 End, last glyph ID in range

0000 0 StartCoverageIndex

 DeviceTableFormat1
XPlaDeviceTable Device Table definition

000B 11 StartSize

000F 15 EndSize

0001 1 DeltaFormat

 1 increase 11ppem by 1 pixel

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

 1 increase 14ppem by 1 pixel

5540 1 increase 15ppem by 1 pixel

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 211

 DeviceTableFormat1
YAdvDeviceTable Device Table definition

000B 11 StartSize

000F 15 EndSize

0001 1 DeltaFormat

 1 increase 11ppem by 1 pixel

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

 1 increase 14ppem by 1 pixel

5540 1 increase 15ppem by 1 pixel

Example 15: AnchorFormat1 Table

Example 15 illustrates an Anchor table for the damma mark glyph in the Arabic script. Format1 is used to
specify X and Y coordinate values in design units.

Example 15

Hex Data Source Comments

 AnchorFormat1
dammaMarkAnchor Anchor table definition

0001 1 AnchorFormat

00BD 189 XCoordinate

FF99 -103 YCoordinate

Example 16: AnchorFormat2 Table

Example 16 shows an AnchorFormat2 table for an attachment point placed above a base glyph. With this
format, the coordinate value for the Anchor depends on the final position of a specific contour point on the
base glyph after hinting. The coordinates are specified in design units.

Example 16

Hex Data Source Comments

 AnchorFormat2 Anchor table definition

ISO/IEC FDIS 14496-22:2006(E)

212 © ISO/IEC 2006 — All rights reserved

AboveBaseAnchor

0002 2 AnchorFormat

0142 322 XCoordinate

0384 900 Ycoordinate

000D 13 AnchorPoint glyph contour point index

Example 17: AnchorFormat3 Table

Example 17 shows an AnchorFormat3 table that specifies an attachment point above a base glyph. Device
tables modify the X and Y coordinates of the Anchor for the point size and resolution of the output font. Here,
the Device tables define pixel adjustments for font sizes from 12 ppem to 17 ppem.

Example 17

Hex Data Source Comments

 AnchorFormat3
AboveBaseAnchor Anchor table definition

0003 3 AnchorFormat

0117 279 XCoordinate

0515 1301 YCoordinate

000A XDevice Offset to DeviceTable for X coordinate (may be NULL)

0014 YDevice Offset to Device table for Y coordinate (may be NULL)

 DeviceTableFormat2
XDevice Device Table definition

000C 12 StartSize

0011 17 EndSize

0002 2 DeltaFormat

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 213

 1 increase 14ppem by 1 pixel

1111 1 increase 15ppem by 1 pixel

 2 increase 16ppem by 1 pixel

2200 2 increase 17ppem by 1 pixel

 DeviceTableFormat2
YDevice Device Table definition

000C 12 StartSize

0011 17 EndSize

0002 2 DeltaFormat

 1 increase 12ppem by 1 pixel

 1 increase 13ppem by 1 pixel

 1 increase 14ppem by 1 pixel

1111 1 increase 15ppem by 1 pixel

 2 increase 16ppem by 1 pixel

2200 2 increase 17ppem by 1 pixel

Example 18: MarkArray Table and MarkRecord

Example 18 shows a MarkArray table with class and attachment point data for two accent marks, a grave and
a cedilla. Two MarkRecords are defined, one for each covered mark glyph. The first MarkRecord assigns a
mark class value of 0 to accents placed above base glyphs, such as the grave, and has an Offset to a
graveMarkAnchor table. The second MarkRecord assigns a mark class value of 1 for all accents positioned
below base glyphs, such as the cedilla, and has an Offset to a cedillaMarkAnchor table.

Example 18

Hex Data Source Comments

 MarkArray
MarkGlyphsArray MarkArray table definition

0002 2 MarkCount
MarkRecord[0] for first mark in MarkCoverage table, grave

ISO/IEC FDIS 14496-22:2006(E)

214 © ISO/IEC 2006 — All rights reserved

0000 0 Class, for marks placed above base glyphs

000A graveMarkAnchor Offset to Anchor table
MarkRecord[1] for second mark in MarkCoverage table = cedilla

0001 1 Class, for marks placed below base glyphs

0010 cedillaMarkAnchor Offset to Anchor table

5.3.4 GSUB – The Glyph Substitution Table

The Glyph Substitution table (GSUB) contains information for substituting glyphs to render the scripts and
language systems supported in a font. Many language systems require glyph substitutes. For example, in the
Arabic script, the glyph shape that depicts a particular character varies according to its position in a word or
text string (see Figure 32). In other language systems, glyph substitutes are aesthetic options for the user,
such as the use of ligature glyphs in the English language (see Figure 33).

Figure 32 – Isolated, initial, medial, and final forms of the Arabic character HAH

Figure 33 – Two Latin glyphs and their associated ligature

5.3.4.1 GSUB – Table Overview

Many fonts use limited character encoding standards that map glyphs to characters one-to-one, assigning a
glyph to each character code value in a font. Multiple character codes cannot be mapped to a single glyph, as
needed for ligature glyphs, and multiple glyphs cannot be mapped to a single character code, as needed to
decompose a ligature into its component glyphs.

To supply glyph substitutes, font developers must assign different character codes to the glyphs, or they must
create additional fonts or character sets. To access these glyphs, users must bear the burden of switching
between character codes, character sets, or fonts.

Substituting Glyphs with OFF

The OFF GSUB table fully supports glyph substitution. To access glyph substitutes, GSUB maps from the
glyph index or indices defined in a cmap table to the glyph index or indices of the glyph substitutes. For
example, if a font has three alternative forms of an ampersand glyph, the cmap table associates the
ampersand's character code with only one of these glyphs. In GSUB, the indices of the other ampersand
glyphs are then referenced by this one index.

The text-processing client uses the GSUB data to manage glyph substitution actions. GSUB identifies the
glyphs that are input to and output from each glyph substitution action, specifies how and where the client

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 215

uses glyph substitutes, and regulates the order of glyph substitution operations. Any number of substitutions
can be defined for each script or language system represented in a font.

The GSUB table supports six types of glyph substitutions that are widely used in international typography:

• A single substitution replaces a single glyph with another single glyph. This is used to render
positional glyph variants in Arabic and vertical text in the Far East (see Figure 34).

Figure 34 – Alternative forms of parentheses used when positioning Kanji vertically

• A multiple substitution replaces a single glyph with more than one glyph. This is used to specify
actions such as ligature decomposition (see Figure 35).

Figure 35 – Decomposing a Latin ligature glyph into its individual glyph components

• An alternate substitution identifies functionally equivalent but different looking forms of a glyph. These
glyphs are often referred to as aesthetic alternatives. For example, a font might have five different
glyphs for the ampersand symbol, but one would have a default glyph index in the cmap table. The
client could use the default glyph or substitute any of the four alternatives (see Figure 36).

Figure 36 – Alternative ampersand glyphs in a font

• A ligature substitution replaces several glyph indices with a single glyph index, as when an Arabic
ligature glyph replaces a string of separate glyphs (see Figure 37). When a string of glyphs can be
replaced with a single ligature glyph, the first glyph is substituted with the ligature. The remaining
glyphs in the string are deleted, this includes those glyphs that are skipped as a result of lookup flags.

ISO/IEC FDIS 14496-22:2006(E)

216 © ISO/IEC 2006 — All rights reserved

Figure 37 – Three Arabic glyphs and their associated ligature glyph

• Contextual substitution, the most powerful type, describes glyph substitutions in context-that is, a
substitution of one or more glyphs within a certain pattern of glyphs. Each substitution describes one
or more input glyph sequences and one or more substitutions to be performed on that sequence.
Contextual substitutions can be applied to specific glyph sequences, glyph classes, or sets of glyphs.

• Chaining contextual substitution extends the capabilities of contextual substitution. With this, one or
more substitutions can be performed on one or more glyphs within a pattern of glyphs (input
sequence), by chaining the input sequence to a 'backtrack' and/or 'lookahead' sequence. Each such
substitution can be applied in three formats to handle glyphs, glyph classes or glyph sets in the input
sequence. Each of these formats can describe one or more of the backtrack, input and lookahead
sequences.

• Reverse Chaining contextual single substitution, allows one glyph to be substituted with another by
chaining input glyph to a 'backtrack' and/or 'lookahead' sequence. The difference between this and
other lookup types is that processing of input glyph sequence goes from end to start.

5.3.4.2 GSUB – Table Organization and Structure

Table Organization

The GSUB table begins with a header that defines Offsets to a ScriptList, a FeatureList, and a LookupList
(see Figure 38):

• The ScriptList identifies all the scripts and language systems in the font that use glyph substitutes.

• The FeatureList defines all the glyph substitution features required to render these scripts and
language systems.

• The LookupList contains all the lookup data needed to implement each glyph substitution feature.

For a detailed discussion of ScriptLists, FeatureLists, and LookupLists, see caluse 5.2x OFF Common Table
Formats.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 217

Figure 38 – High-level organization of GSUB table

This organization helps text-processing clients to easily locate the features and lookups that apply to a
particular script or language system. To access GSUB information, clients should use the following procedure:

1. Locate the current script in the GSUB ScriptList table.

2. If the language system is known, search the script for the correct LangSys table; otherwise, use the
script's default language system (DefaultLangSys table).

3. The LangSys table provides index numbers into the GSUB FeatureList table to access a required
feature and a number of additional features.

4. Inspect the FeatureTag of each feature, and select the features to apply to an input glyph string. Each
feature provides an array of index numbers into the GSUB LookupList table.

5. Assemble all lookups from the set of chosen features, and apply the lookups in the order given in the
LookupList table.

Lookup data is defined in one or more subtables that define the specific conditions, type, and results of a
substitution action used to implement a feature. All subtables in a lookup must be of the same LookupType, as
listed in the LookupType Enumeration table:

LookupType Enumeration table for glyph substitution

Value Type Description

1 Single Replace one glyph with one glyph

ISO/IEC FDIS 14496-22:2006(E)

218 © ISO/IEC 2006 — All rights reserved

2 Multiple Replace one glyph with more than one glyph

3 Alternate Replace one glyph with one of many glyphs

4 Ligature Replace multiple glyphs with one glyph

5 Context Replace one or more glyphs in context

6 Chaining Context Replace one or more glyphs in chained context

7 Extension
Substitution

Extension mechanism for other substitutions (i.e. this excludes the Extension
type substitution itself)

8 Reverse chaining
context single

Applied in reverse order, replace single glyph in chaining context

9+ Reserved For future use

Each LookupType subtable has one or more formats. The "best" format depends on the type of substitution
and the resulting storage efficiency. When glyph information is best presented in more than one format, a
single lookup may define more than one subtable, as long as all the subtables are for the same LookupType.
For example, within a given lookup, a glyph index array format may best represent one set of target glyphs,
whereas a glyph index range format may be better for another set.

A series of substitution operations on the same glyph or string requires multiple lookups, one for each
separate action. Each lookup is given a different array number in the LookupList table and is applied in the
LookupList order.

During text processing, a client applies a lookup to each glyph in the string before moving to the next lookup.
A lookup is finished for a glyph after the client locates the target glyph or glyph context and performs a
substitution, if specified. To move to the "next" glyph, the client will typically skip all the glyphs that participated
in the lookup operation: glyphs that were substituted as well as any other glyphs that formed a context for the
operation.

In the case of chained contextual lookups, glyphs comprising backtrack and lookahead sequences may
participate in more than one context.

The rest of this clause describes the GSUB header and the subtables defined for each GSUB LookupType.
Examples at the end of this page illustrate each of the eight LookupTypes, including the three formats
available for contextual substitutions.

GSUB Header

The GSUB table begins with a header that contains a version number for the table (Version) and Offsets to
three tables: ScriptList, FeatureList, and LookupList. For descriptions of each of these tables, see caluse 5.2,
OFF Common Table Formats. Example 1 at the end of this clause shows a GSUB Header table definition.

GSUB Header

Type Name Description

Fixed Version Version of the GSUB table-initially set to 0x00010000

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 219

Offset ScriptList Offset to ScriptList table-from beginning of GSUB table

Offset FeatureList Offset to FeatureList table-from beginning of GSUB table

Offset LookupList Offset to LookupList table-from beginning of GSUB table

5.3.4.3 GSUB – Lookup Type Descriptions

LookupType 1: Single Substitution Subtable

Single substitution (SingleSubst) subtables tell a client to replace a single glyph with another glyph. The
subtables can be either of two formats. Both formats require two distinct sets of glyph indices: one that defines
input glyphs (specified in the Coverage table), and one that defines the output glyphs. Format 1 requires less
space than Format 2, but it is less flexible.

Single Substitution Format 1

Format 1 calculates the indices of the output glyphs, which are not explicitly defined in the subtable. To
calculate an output glyph index, Format 1 adds a constant delta value to the input glyph index. For the
substitutions to occur properly, the glyph indices in the input and output ranges must be in the same order.
This format does not use the Coverage Index that is returned from the Coverage table.

The SingleSubstFormat1 subtable begins with a format identifier (SubstFormat) of 1. An Offset references a
Coverage table that specifies the indices of the input glyphs. DeltaGlyphID is the constant value added to
each input glyph index to calculate the index of the corresponding output glyph.

Example 2 at the end of this clause uses Format 1 to replace standard numerals with lining numerals.

SingleSubstFormat1 subtable: Calculated output glyph indices

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

int16 DeltaGlyphID Add to original GlyphID to get substitute GlyphID

Single Substitution Format 2

Format 2 is more flexible than Format 1, but requires more space. It provides an array of output glyph indices
(Substitute) explicitly matched to the input glyph indices specified in the Coverage table.

The SingleSubstFormat2 subtable specifies a format identifier (SubstFormat), an Offset to a Coverage table
that defines the input glyph indices, a count of output glyph indices in the Substitute array (GlyphCount), and a
list of the output glyph indices in the Substitute array (Substitute).

The Substitute array must contain the same number of glyph indices as the Coverage table. To locate the
corresponding output glyph index in the Substitute array, this format uses the Coverage Index returned from
the Coverage table.

ISO/IEC FDIS 14496-22:2006(E)

220 © ISO/IEC 2006 — All rights reserved

Example 3 at the end of this clause uses Format 2 to substitute vertically oriented glyphs for horizontally
oriented glyphs.

SingleSubstFormat2 subtable: Specified output glyph indices

Type Name Description

uint16 SubstFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 GlyphCount Number of GlyphIDs in the Substitute array

GlyphID Substitute
[GlyphCount]

Array of substitute GlyphIDs-ordered by Coverage Index

LookupType 2: Multiple Substitution Subtable

A Multiple Substitution (MultipleSubst) subtable replaces a single glyph with more than one glyph, as when
multiple glyphs replace a single ligature. The subtable has a single format: MultipleSubstFormat1. The
subtable specifies a format identifier (SubstFormat), an Offset to a Coverage table that defines the input glyph
indices, a count of Offsets in the Sequence array (SequenceCount), and an array of Offsets to Sequence
tables that define the output glyph indices (Sequence). The Sequence table Offsets are ordered by the
Coverage Index of the input glyphs.

For each input glyph listed in the Coverage table, a Sequence table defines the output glyphs. Each
Sequence table contains a count of the glyphs in the output glyph sequence (GlyphCount) and an array of
output glyph indices (Substitute).
NOTE The order of the output glyph indices depends on the writing direction of the text. For text written left to right,
the left-most glyph will be first glyph in the sequence. Conversely, for text written right to left, the right-most glyph will be
first.

The use of multiple substitution for deletion of an input glyph is prohibited. GlyphCount should always be
greater than 0.

Example 4 at the end of this clause shows how to replace a single ligature with three glyphs.

MultipleSubstFormat1 subtable: Multiple output glyphs

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 SequenceCount Number of Sequence table Offsets in the Sequence array

Offset Sequence
[SequenceCount]

Array of Offsets to Sequence tables-from beginning of Substitution table-ordered
by Coverage Index

Sequence table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 221

Type Name Description

uint16 GlyphCount Number of GlyphIDs in the Substitute array. This should always be greater than
0.

GlyphID Substitute
[GlyphCount]

String of GlyphIDs to substitute

LookupType 3: Alternate Substitution Subtable

An Alternate Substitution (AlternateSubst) subtable identifies any number of aesthetic alternatives from which
a user can choose a glyph variant to replace the input glyph. For example, if a font contains four variants of
the ampersand symbol, the cmap table will specify the index of one of the four glyphs as the default glyph
index, and an AlternateSubst subtable will list the indices of the other three glyphs as alternatives. A text-
processing client would then have the option of replacing the default glyph with any of the three alternatives.

The subtable has one format: AlternateSubstFormat1. The subtable contains a format identifier (SubstFormat),
an Offset to a Coverage table containing the indices of glyphs with alternative forms (Coverage), a count of
Offsets to AlternateSet tables (AlternateSetCount), and an array of Offsets to AlternateSet tables
(AlternateSet).

For each glyph, an AlternateSet subtable contains a count of the alternative glyphs (GlyphCount) and an array
of their glyph indices (Alternate). Because all the glyphs are functionally equivalent, they can be in any order
in the array.

Example 5 at the end of this clause shows how to replace the default ampersand glyph with alternative glyphs.

AlternateSubstFormat1 subtable: Alternative output glyphs

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 AlternateSetCount Number of AlternateSet tables

Offset AlternateSet
[AlternateSetCount]

Array of Offsets to AlternateSet tables-from beginning of Substitution table-
ordered by Coverage Index

AlternateSet table

Type Name Description

uint16 GlyphCount Number of GlyphIDs in the Alternate array

GlyphID Alternate[GlyphCount] Array of alternate GlyphIDs-in arbitrary order

LookupType 4: Ligature Substitution Subtable

ISO/IEC FDIS 14496-22:2006(E)

222 © ISO/IEC 2006 — All rights reserved

A Ligature Substitution (LigatureSubst) subtable identifies ligature substitutions where a single glyph replaces
multiple glyphs. One LigatureSubst subtable can specify any number of ligature substitutions.

The subtable uses a single format: LigatureSubstFormat1. It contains a format identifier (SubstFormat), a
Coverage table Offset (Coverage), a count of the ligature sets defined in this table (LigSetCount), and an
array of Offsets to LigatureSet tables (LigatureSet). The Coverage table specifies only the index of the first
glyph component of each ligature set.

LigatureSubstFormat1 subtable:
All ligature substitutions in a script

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 LigSetCount Number of LigatureSet tables

Offset LigatureSet
[LigSetCount]

Array of Offsets to LigatureSet tables-from beginning of Substitution table-
ordered by Coverage Index

A LigatureSet table, one for each covered glyph, specifies all the ligature strings that begin with the covered
glyph. For example, if the Coverage table lists the glyph index for a lowercase "f," then a LigatureSet table will
define the "ffl," "fl," "ffi," "fi," and "ff" ligatures. If the Coverage table also lists the glyph index for a lowercase
"e," then a different LigatureSet table will define the "etc" ligature.

A LigatureSet table consists of a count of the ligatures that begin with the covered glyph (LigatureCount) and
an array of Offsets to Ligature tables, which define the glyphs in each ligature (Ligature). The order in the
Ligature Offset array defines the preference for using the ligatures. For example, if the "ffl" ligature is
preferable to the "ff" ligature, then the Ligature array would list the Offset to the "ffl" Ligature table before the
Offset to the "ff" Ligature table.

LigatureSet table: All ligatures beginning with the same glyph

Type Name Description

uint16 LigatureCount Number of Ligature tables

Offset Ligature
[LigatureCount]

Array of Offsets to Ligature tables-from beginning of LigatureSet table-ordered
by preference

For each ligature in the set, a Ligature table specifies the GlyphID of the output ligature glyph (LigGlyph); a
count of the total number of component glyphs in the ligature, including the first component (CompCount); and
an array of GlyphIDs for the components (Component). The array starts with the second component glyph
(array index = 1) in the ligature because the first component glyph is specified in the Coverage table.
NOTE The Component array lists GlyphIDs according to the writing direction of the text. For text written right to left,
the right-most glyph will be first. Conversely, for text written left to right, the left-most glyph will be first.

Example 6 at the end of this clause shows how to replace a string of glyphs with a single ligature.

Ligature table: Glyph components for one ligature

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 223

Type Name Description

GlyphID LigGlyph GlyphID of ligature to substitute

uint16 CompCount Number of components in the ligature

GlyphID Component
[CompCount - 1]

Array of component GlyphIDs-start with the second component-ordered in writing
direction

LookupType 5: Contextual Substitution Subtable

A Contextual Substitution (ContextSubst) subtable defines the most powerful type of glyph substitution lookup:
it describes glyph substitutions in context that replace one or more glyphs within a certain pattern of glyphs.

ContextSubst subtables can be any of three formats that define a context in terms of a specific sequence of
glyphs, glyph classes, or glyph sets. Each format can describe one or more input glyph sequences and one or
more substitutions for each sequence.

All three formats of ContextSubst subtables specify substitution data in a SubstLookupRecord. A description
of that record follows.

SubstLookupRecord

Type Name Description

uint16 SequenceIndex Index into current glyph sequence-first glyph = 0

uint16 LookupListIndex Lookup to apply to that position-zero-based

The SequenceIndex in a SubstLookupRecord must take into consideration the order in which lookups are
applied to the entire glyph sequence. Because multiple substitutions may occur per context, the
SequenceIndex and LookupListIndex refer to the glyph sequence after the text-processing client has applied
any previous lookups. In other words, the SequenceIndex identifies the location for the substitution at the time
that the lookup is to be applied. For example, consider an input glyph sequence of four glyphs. The first glyph
does not have a substitute, but the middle two glyphs will be replaced with a ligature, and a single glyph will
replace the fourth glyph:

• The first glyph is in position 0. No lookups will be applied at position 0, so no SubstLookupRecord is
defined.

• The SubstLookupRecord defined for the ligature substitution specifies the SequenceIndex as position
1, which is the position of the first-glyph component in the ligature string. After the ligature replaces
the glyphs in positions 1 and 2, however, the input glyph sequence consists of only three glyphs, not
the original four.

• To replace the last glyph in the sequence, the SubstLookupRecord defines the SequenceIndex as
position 2 instead of position 3. This position reflects the effect of the ligature substitution applied
before this single substitution.

NOTE This example assumes that the LookupList specifies the ligature substitution lookup before the single
substitution lookup.

Context Substitution Format 1

ISO/IEC FDIS 14496-22:2006(E)

224 © ISO/IEC 2006 — All rights reserved

Format 1 defines the context for a glyph substitution as a particular sequence of glyphs. For example, a
context could be <xyz>, <holiday>, <!?*#@>, or any other glyph sequence.

Within a context sequence, Format 1 identifies particular glyph positions (not glyph indices) as the targets for
specific substitutions. When a text-processing client locates a context in a string of glyphs, it finds the lookup
data for a targeted position and makes a substitution by applying the lookup data at that location.

For example, if a client is to replace the glyph string <abc> with its reverse glyph string <cba>, the input
context is defined as the glyph sequence, <abc>, and the lookups defined for the context are (1) "a" to "c" and
(2) "c" to "a". When a client encounters the context <abc>, the lookups are performed in the order stored. First,
"c" is substituted for "a" resulting in <cbc>. Second, "a" is substituted for the "c" that has not yet been touched,
resulting in <cba>.

To specify a context, a Coverage table lists the first glyph in the sequence, and a SubRule table identifies the
remaining glyphs. To describe the <abc> context used in the previous example, the Coverage table lists the
glyph index of the first component of the sequence-the "a" glyph. A SubRule table defines indices for the "b"
and "c" glyphs.

A single ContextSubstFormat1 subtable may define more than one context glyph sequence. If different
context sequences begin with the same glyph, then the Coverage table should list the glyph only once
because all glyphs in the table must be unique. For example, if three contexts each start with an "s" and two
start with a "t," then the Coverage table will list one "s" and one "t."

For each context, a SubRule table lists all the glyphs that follow the first glyph. The table also contains an
array of SubstLookupRecords that specify the substitution lookup data for each glyph position (including the
first glyph position) in the context.

All of the SubRule tables defining contexts that begin with the same first glyph are grouped together and
defined in a SubRuleSet table. For example, the SubRule tables that define the three contexts that begin with
an "s" are grouped in one SubRuleSet table, and the SubRule tables that define the two contexts that begin
with a "t" are grouped in a second SubRuleSet table. Each glyph listed in the Coverage table must have a
SubRuleSet table defining all the SubRule tables that apply to a covered glyph.

To locate a context glyph sequence, the text-processing client searches the Coverage table each time it
encounters a new text glyph. If the glyph is covered, the client reads the corresponding SubRuleSet table and
examines each SubRule table in the set to determine whether the rest of the context matches the subsequent
glyphs in the text. If the context and text string match, the client finds the target glyph positions, applies the
lookups for those positions, and completes the substitutions.

A ContextSubstFormat1 subtable contains a format identifier (SubstFormat), an Offset to a Coverage table
(Coverage), a count of defined SubRuleSets (SubRuleSetCount), and an array of Offsets to the SubRuleSet
tables (SubRuleSet). As mentioned, one SubRuleSet table must be defined for each glyph listed in the
Coverage table.

In the SubRuleSet array, the SubRuleSet table Offsets are ordered in the Coverage Index order. The first
SubRuleSet in the array applies to the first GlyphID listed in the Coverage table, the second SubRuleSet in
the array applies to the second GlyphID listed in the Coverage table, and so on.

ContextSubstFormat1 subtable: Simple context glyph substitution

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 SubRuleSetCount Number of SubRuleSet tables-must equal GlyphCount in Coverage table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 225

Offset SubRuleSet
[SubRuleSetCount]

Array of Offsets to SubRuleSet tables-from beginning of Substitution table-
ordered by Coverage Index

A SubRuleSet table consists of an array of Offsets to SubRule tables (SubRule), ordered by preference, and a
count of the SubRule tables defined in the set (SubRuleCount). The order in the SubRule array can be critical.
Consider two contexts, <abc> and <abcd>. If <abc> is first in the SubRule array, all instances of <abc> in the
text-including all instances of <abcd>-will be changed. If <abcd> comes first in the array, however, only
<abcd> sequences will be changed, without affecting any instances of <abc>.

SubRuleSet table: All contexts beginning with the same glyph

Type Name Description

uint16 SubRuleCount Number of SubRule tables

Offset SubRule
[SubRuleCount]

Array of Offsets to SubRule tables-from beginning of SubRuleSet table-ordered
by preference

A SubRule table consists of a count of the glyphs to be matched in the input context sequence (GlyphCount),
including the first glyph in the sequence, and an array of glyph indices that describe the context (Input). The
Coverage table specifies the index of the first glyph in the context, and the Input array begins with the second
glyph (array index = 1) in the context sequence.
NOTE The Input array lists the indices in the order the corresponding glyphs appear in the text. For text written from
right to left, the right-most glyph will be first; conversely, for text written from left to right, the left-most glyph will be first.

A SubRule table also contains a count of the substitutions to be performed on the input glyph sequence
(SubstCount) and an array of SubstitutionLookupRecords (SubstLookupRecord). Each record specifies a
position in the input glyph sequence and a LookupListIndex to the substitution lookup that is applied at that
position. The array should list records in design order, or the order the lookups should be applied to the entire
glyph sequence.

SubRule table: One simple context definition

Type Name Description

uint16 GlyphCount Total number of glyphs in input glyph sequence-includes the first glyph

uint16 SubstCount Number of SubstLookupRecords

GlyphID Input
[GlyphCount - 1]

Array of input GlyphIDs-start with second glyph

struct SubstLookupRecord
[SubstCount]

Array of SubstLookupRecords-in design order

Example 7 at the end of the clause shows how to use the ContextSubstFormat1 subtable to replace a
sequence of three glyphs with a sequence preferred for the French language system.

Context Substitution Format 2

ISO/IEC FDIS 14496-22:2006(E)

226 © ISO/IEC 2006 — All rights reserved

Format 2, a more flexible format than Format 1, describes class-based context substitution. For this format, a
specific integer, called a class value, must be assigned to each glyph component in all context glyph
sequences. Contexts are then defined as sequences of glyph class values. More than one context may be
defined at a time.

For example, suppose that a swash capital glyph should replace each uppercase letter glyph that is preceded
by a space glyph and followed by a lowercase letter glyph (a glyph sequence of space - uppercase -
lowercase). The set of uppercase glyphs would constitute one glyph class (Class 1), the set of lowercase
glyphs would constitute a second class (Class 2), and the space glyph would constitute a third class (Class 3).
The input context might be specified with a context rule (called a SubClassRule) that describes "the set of
glyph strings that form a sequence of three glyph classes, one glyph from Class 3, followed by one glyph from
Class 1, followed by one glyph from Class 2."

Each ContextSubstFormat2 subtable contains an Offset to a class definition table (ClassDef), which defines
the glyph class values of all input contexts. Generally, a unique ClassDef table will be declared in each
instance of the ContextSubstFormat2 table that is included in a font, even though several Format 2 tables
could share ClassDef tables. Class assignments are fixed (the same for each position in the context), and
classes are exclusive (a glyph cannot be in more than one class at a time). The output glyphs that replace the
glyphs in the context sequences do not need class values because they are specified elsewhere by GlyphID.

The ContextSubstFormat2 subtable also contains a format identifier (SubstFormat) and defines an Offset to a
Coverage table (Coverage). For this format, the Coverage table lists indices for the complete set of unique
glyphs (not glyph classes) that may appear as the first glyph of any class-based context. In other words, the
Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in any of the
context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then the
Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ContextSubstFormat2 subtable also defines an array of Offsets to the SubClassSet tables (SubClassSet)
and a count of the SubClassSet tables (SubClassSetCnt). The array contains one Offset for each class
(including Class 0) in the ClassDef table. In the array, the class value defines an Offset's index position, and
the SubClassSet Offsets are ordered by ascending class value (from 0 to SubClassSetCnt - 1).

For example, the first SubClassSet listed in the array contains all contexts beginning with Class 0 glyphs, the
second SubClassSet contains all contexts beginning with Class 1 glyphs, and so on. If no contexts begin with
a particular class (that is, if a SubClassSet contains no SubClassRule tables), then the Offset to that particular
SubClassSet in the SubClassSet array will be set to NULL.

ContextSubstFormat2 subtable: Class-based context glyph substitution

Type Name Description

uint16 SubstFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of Substitution table

Offset ClassDef Offset to glyph ClassDef table-from beginning of Substitution table

uint16 SubClassSetCnt Number of SubClassSet tables

Offset SubClassSet
[SubClassSetCnt]

Array of Offsets to SubClassSet tables-from beginning of Substitution table-
ordered by class-may be NULL

Each context is defined in a SubClassRule table, and all SubClassRules that specify contexts beginning with
the same class value are grouped in a SubClassSet table. Consequently, the SubClassSet containing a
context identifies a context's first class component.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 227

Each SubClassSet table consists of a count of the SubClassRule tables defined in the SubClassSet
(SubClassRuleCnt) and an array of Offsets to SubClassRule tables (SubClassRule). The SubClassRule
tables are ordered by preference in the SubClassRule array of the SubClassSet.

SubClassSet subtable

Type Name Description

uint16 SubClassRuleCnt Number of SubClassRule tables

Offset SubClassRule
[SubClassRuleCount]

Array of Offsets to SubClassRule tables-from beginning of SubClassSet-
ordered by preference

For each context, a SubClassRule table contains a count of the glyph classes in the context sequence
(GlyphCount), including the first class. A Class array lists the classes, beginning with the second class (array
index = 1), that follow the first class in the context.
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most class
will be first. Conversely, for text written from left to right, the left-most class will be first.

The values specified in the Class array are the values defined in the ClassDef table. For example, a context
consisting of the sequence "Class 2, Class 7, Class 5, Class 0" will produce a Class array of 7,5,0. The first
class in the sequence, Class 2, is identified in the ContextSubstFormat2 table by the SubClassSet array index
of the corresponding SubClassSet.

A SubClassRule also contains a count of the substitutions to be performed on the context (SubstCount) and
an array of SubstLookupRecords (SubstLookupRecord) that supply the substitution data. For each position in
the context that requires a substitution, a SubstLookupRecord specifies a LookupList index and a position in
the input glyph sequence where the lookup is applied. The SubstLookupRecord array lists
SubstLookupRecords in design order-that is, the order in which lookups should be applied to the entire glyph
sequence.

SubClassRule table: Context definition for one class

Type Name Description

uint16 GlyphCount Total number of classes specified for the context in the rule-includes the first
class

uint16 SubstCount Number of SubstLookupRecords

uint16 Class
[GlyphCount - 1]

Array of classes-beginning with the second class-to be matched to the input
glyph class sequence

struct SubstLookupRecord
[SubstCount]

Array of Substitution lookups-in design order

Example 8 at the end of this clause uses Format 2 to substitute Arabic mark glyphs for base glyphs of different
heights.

Context Substitution Format 3

ISO/IEC FDIS 14496-22:2006(E)

228 © ISO/IEC 2006 — All rights reserved

Format 3, coverage-based context substitution, defines a context rule as a sequence of coverage tables. Each
position in the sequence may define a different Coverage table for the set of glyphs that matches the context
pattern. With Format 3, the glyph sets defined in the different Coverage tables may intersect, unlike Format 2
which specifies fixed class assignments (identical for each position in the context sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).

For example, consider an input context that contains a lowercase glyph (position 0), followed by an uppercase
glyph (position 1), either a lowercase or numeral glyph (position 2), and then either a lowercase or uppercase
vowel (position 3). This context requires four Coverage tables, one for each position:

• In position 0, the Coverage table lists the set of lowercase glyphs.

• In position 1, the Coverage table lists the set of uppercase glyphs.

• In position 2, the Coverage table lists the set of lowercase and numeral glyphs, a superset of the
glyphs defined in the Coverage table for position 0.

• In position 3, the Coverage table lists the set of lowercase and uppercase vowels, a subset of the
glyphs defined in the Coverage tables for both positions 0 and 1.

Unlike Formats 1 and 2, this format defines only one context rule at a time. It consists of a format identifier
(SubstFormat), a count of the glyphs in the sequence to be matched (GlyphCount), and an array of Coverage
Offsets that describe the input context sequence (Coverage).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written
from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most glyph will
be first.

The subtable also contains a count of the substitutions to be performed on the input Coverage sequence
(SubstCount) and an array of SubstLookupRecords (SubstLookupRecord) in design order-that is, the order in
which lookups should be applied to the entire glyph sequence.

Example 9 at the end of this clause substitutes swash glyphs for two out of three glyphs in a sequence.

ChainContextSubstFormat3 subtable: Coverage-based context glyph substitution

Type Name Description

uint16 SubstFormat Format identifier-format = 3

uint16 GlyphCount Number of glyphs in the input glyph sequence

uint16 SubstCount Number of SubstLookupRecords

Offset Coverage[GlyphCount] Array of Offsets to Coverage table-from beginning of Substitution table-in
glyph sequence order

struct SubstLookupRecord
[SubstCount]

Array of SubstLookupRecords-in design order

LookupType 6: Chaining Contextual Substitution Subtable

A Chaining Contextual Substitution subtable (ChainContextSubst) describes glyph substitutions in context with
an ability to look back and/or look ahead in the sequence of glyphs. The design of the Chaining Contextual
Substitution subtable is parallel to that of the Contextual Substitution subtable, including the availability of

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 229

three formats for handling sequences of glyphs, glyph classes, or glyph sets. Each format can describe one or
more backtrack, input, and lookahead sequences and one or more substitutions for each sequence.

Chaining Context Substitution Format 1: Simple Chaining Context Glyph Substitution

Format 1 defines the context for a glyph substitution as a particular sequence of glyphs. For example, a
context could be <xyz>, <holiday>, <!?*#@>, or any other glyph sequence.

Within a context sequence, Format 1 identifies particular glyph positions (not glyph indices) as the targets for
specific substitutions. When a text-processing client locates a context in a string of glyphs, it finds the lookup
data for a targeted position and makes a substitution by applying the lookup data at that location.

To specify the context, the coverage table lists the first glyph in the input sequence, and the ChainSubRule
subtable defines the rest. Once a covered glyph is found at position i, the client reads the corresponding
ChainSubRuleSet table and examines each table to determine if it matches the surrounding glyphs in the
glyph string. In the simplest of cases, there is a match if the string <backtrack sequence>+<input
sequence>+<lookahead sequence> matches with the glyphs at position i - BacktrackGlyphCount in the text.
LookupFlag values affect backtrack/lookahead sequences.

To clarify the ordering of glyph arrays for input, backtrack and lookahead sequences, the following illustration
is provided. Input sequence match begins at i where the input sequence match begins. The backtrack
sequence is ordered beginning at i - 1 and increases in Offset value as one moves away from i. The
lookahead sequence begins after the input sequence and increases in logical order.

Logical order - a b c d e f g h i j

 i

Input sequence - 0 1

Backtrack sequence - 3 2 1 0

Lookahead sequence - 0 1 2 3

If there is a match, then the client finds the target glyph positions for substitutions and completes the
substitutions. Please note that (just like in the ContextSubstFormat1 subtable) these lookups are required to
operate within the range of text from the covered glyph to the end of the input sequence. No substitutions can
be defined for the backtracking sequence or the lookahead sequence.

Once the substitutions are complete, the client should move to the glyph position immediately following the
matched input sequence and resume the lookup process from there.

A single ChainContextSubstFormat1 subtable may define more than one context glyph sequence. If different
context sequences begin with the same glyph, then the Coverage table should list the glyph only once
because all glyphs in the table must be unique. For example, if three contexts each start with an "s" and two
start with a "t," then the Coverage table will list one "s" and one "t."

All of the ChainSubRule tables defining contexts that begin with the same first glyph are grouped together and
defined in a ChainSubRuleSet table. For example, the ChainSubRule tables that define the three contexts that
begin with an "s" are grouped in one ChainSubRuleSet table, and the ChainSubRule tables that define the two
contexts that begin with a "t" are grouped in a second ChainSubRuleSet table. Each glyph listed in the
Coverage table must have a ChainSubRuleSet table defining all the ChainSubRule tables that apply to a
covered glyph.

A ChainContextSubstFormat1 subtable contains a format identifier (SubstFormat), an Offset to a Coverage
table (Coverage), a count of defined ChainSubRuleSets (ChainSubRuleSetCount), and an array of Offsets to
the ChainSubRuleSet tables (ChainSubRuleSet). As mentioned, one ChainSubRuleSet table must be defined
for each glyph listed in the Coverage table.

ISO/IEC FDIS 14496-22:2006(E)

230 © ISO/IEC 2006 — All rights reserved

In the ChainSubRuleSet array, the ChainSubRuleSet table Offsets are ordered in the Coverage Index order.
The first ChainSubRuleSet in the array applies to the first GlyphID listed in the Coverage table, the second
ChainSubRuleSet in the array applies to the second GlyphID listed in the Coverage table, and so on.

ChainContextSubstFormat1 subtable: Simple context glyph substitution

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table-from beginning of Substitution table

uint16 ChainSubRuleSetCount Number of ChainSubRuleSet tables-must equal GlyphCount in Coverage
table

Offset ChainSubRuleSet
[ChainSubRuleSetCount]

Array of Offsets to ChainSubRuleSet tables-from beginning of Substitution
table-ordered by Coverage Index

A ChainSubRuleSet table consists of an array of Offsets to ChainSubRule tables (ChainSubRule), ordered by
preference, and a count of the ChainSubRule tables defined in the set (ChainSubRuleCount).

The order in the ChainSubRule array can be critical. Consider two contexts, <abc> and <abcd>. If <abc> is
first in the ChainSubRule array, all instances of <abc> in the text-including all instances of <abcd>-will be
changed. If <abcd> comes first in the array, however, only <abcd> sequences will be changed, without
affecting any instances of <abc>.

ChainSubRuleSet table: All contexts beginning with the same glyph

Type Name Description

uint16 ChainSubRuleCount Number of ChainSubRule tables

Offset ChainSubRule
[ChainSubRuleCount]

Array of Offsets to ChainSubRule tables-from beginning of ChainSubRuleSet
table-ordered by preference

A ChainSubRule table consists of a count of the glyphs to be matched in the backtrack, input, and lookahead
context sequences, including the first glyph in each sequence, and an array of glyph indices that describe
each portion of the contexts. The Coverage table specifies the index of the first glyph in each context, and
each array begins with the second glyph (array index = 1) in the context sequence.
NOTE All arrays list the indices in the order the corresponding glyphs appear in the text. For text written from right to
left, the right-most glyph will be first; conversely, for text written from left to right, the left-most glyph will be first.

A ChainSubRule table also contains a count of the substitutions to be performed on the input glyph sequence
(SubstCount) and an array of SubstitutionLookupRecords (SubstLookupRecord). Each record specifies a
position in the input glyph sequence and a LookupListIndex to the substitution lookup that is applied at that
position. The array should list records in design order, or the order the lookups should be applied to the entire
glyph sequence.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 231

ChainSubRule subtable

Type Name Description

uint16 BacktrackGlyphCount Total number of glyphs in the backtrack sequence (number of glyphs to be
matched before the first glyph)

GlyphID Backtrack
[BacktrackGlyphCount]

Array of backtracking GlyphID's (to be matched before the input sequence)

uint16 InputGlyphCount Total number of glyphs in the input sequence (includes the first glyph)

GlyphID Input
[InputGlyphCount - 1]

Array of input GlyphIDs (start with second glyph)

uint16 LookaheadGlyphCount Total number of glyphs in the look ahead sequence (number of glyphs to be
matched after the input sequence)

GlyphID LookAhead
[LookAheadGlyphCount]

Array of lookahead GlyphID's (to be matched after the input sequence)

uint16 SubstCount Number of SubstLookupRecords

struct SubstLookupRecord
[SubstCount]

Array of SubstLookupRecords (in design order)

Chaining Context Substitution Format 2: Class-based Chaining Context Glyph Substitution

Format 2 describes class-based chaining context substitution. For this format, a specific integer, called a class
value, must be assigned to each glyph component in all context glyph sequences. Contexts are then defined
as sequences of glyph class values. More than one context may be defined at a time.

To chain contexts, three classes are used in the glyph ClassDef table: Backtrack ClassDef, Input ClassDef,
and Lookahead ClassDef.

The ChainContextSubstFormat2 subtable also contains a format identifier (SubstFormat) and defines an
Offset to a Coverage table (Coverage). For this format, the Coverage table lists indices for the complete set of
unique glyphs (not glyph classes) that may appear as the first glyph of any class-based context. In other
words, the Coverage table contains the list of glyph indices for all the glyphs in all classes that may be first in
any of the context class sequences. For example, if the contexts begin with a Class 1 or Class 2 glyph, then
the Coverage table will list the indices of all Class 1 and Class 2 glyphs.

A ChainContextSubstFormat2 subtable also defines an array of Offsets to the ChainSubClassSet tables
(ChainSubClassSet) and a count of the ChainSubClassSet tables (ChainSubClassSetCnt). The array contains
one Offset for each class (including Class 0) in the ClassDef table. In the array, the class value defines an
Offset's index position, and the ChainSubClassSet Offsets are ordered by ascending class value (from 0 to
ChainSubClassSetCnt - 1).

If no contexts begin with a particular class (that is, if a ChainSubClassSet contains no ChainSubClassRule
tables), then the Offset to that particular ChainSubClassSet in the ChainSubClassSet array will be set to
NULL.

ChainContextSubstFormat2 subtable: Class-based chaining context glyph substitution

ISO/IEC FDIS 14496-22:2006(E)

232 © ISO/IEC 2006 — All rights reserved

Type Name Description

uint16 SubstFormat Format identifier-format = 2

Offset Coverage Offset to Coverage table-from beginning of Substitution table

Offset BacktrackClassDef Offset to glyph ClassDef table containing backtrack sequence data-from
beginning of Substitution table

Offset InputClassDef Offset to glyph ClassDef table containing input sequence data-from beginning
of Substitution table

Offset LookaheadClassDef Offset to glyph ClassDef table containing lookahead sequence data-from
beginning of Substitution table

uint16 ChainSubClassSetCnt Number of ChainSubClassSet tables

Offset ChainSubClassSet
[ChainSubClassSetCnt]

Array of Offsets to ChainSubClassSet tables-from beginning of Substitution
table-ordered by input class-may be NULL

Each context is defined in a ChainSubClassRule table, and all ChainSubClassRules that specify contexts
beginning with the same class value are grouped in a ChainSubClassSet table. Consequently, the
ChainSubClassSet containing a context identifies a context's first class component.

Each ChainSubClassSet table consists of a count of the ChainSubClassRule tables defined in the
ChainSubClassSet (ChainSubClassRuleCnt) and an array of Offsets to ChainSubClassRule tables
(ChainSubClassRule). The ChainSubClassRule tables are ordered by preference in the ChainSubClassRule
array of the ChainSubClassSet.

ChainSubClassSet subtable

Type Name Description

uint16 ChainSubClassRuleCnt Number of ChainSubClassRule tables

Offset ChainSubClassRule
[ChainSubClassRuleCount]

Array of Offsets to ChainSubClassRule tables-from beginning of
ChainSubClassSet-ordered by preference

For each context, a ChainSubClassRule table contains a count of the glyph classes in the context sequence
(GlyphCount), including the first class. A Class array lists the classes, beginning with the second class (array
index = 1), that follow the first class in the context.
NOTE Text order depends on the writing direction of the text. For text written from right to left, the right-most class
will be first. Conversely, for text written from left to right, the left-most class will be first.

The values specified in the Class array are the values defined in the ClassDef table. The first class in the
sequence, Class 2, is identified in the ChainContextSubstFormat2 table by the ChainSubClassSet array index
of the corresponding ChainSubClassSet.

A ChainSubClassRule also contains a count of the substitutions to be performed on the context (SubstCount)
and an array of SubstLookupRecords (SubstLookupRecord) that supply the substitution data. For each
position in the context that requires a substitution, a SubstLookupRecord specifies a LookupList index and a
position in the input glyph sequence where the lookup is applied. The SubstLookupRecord array lists

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 233

SubstLookupRecords in design order-that is, the order in which lookups should be applied to the entire glyph
sequence.

ChainSubClassRule table: Chaining context definition for one class

Type Name Description

uint16 BacktrackGlyphCount Total number of glyphs in the backtrack sequence (number of glyphs to be
matched before the first glyph)

uint16 Backtrack
[BacktrackGlyphCount]

Array of backtracking classes(to be matched before the input sequence)

uint16 InputGlyphCount Total number of classes in the input sequence (includes the first class)

uint16 Input
[InputGlyphCount - 1]

Array of input classes(start with second class; to be matched with the input
glyph sequence)

uint16 LookaheadGlyphCount Total number of classes in the look ahead sequence (number of classes to be
matched after the input sequence)

uint16 LookAhead
[LookAheadGlyphCount]

Array of lookahead classes(to be matched after the input sequence)

uint16 SubstCount Number of SubstLookupRecords

struct SubstLookupRecord
[SubstCount]

Array of SubstLookupRecords (in design order)

Chaining Context Substitution Format 3: Coverage-based Chaining Context Glyph Substitution

Format 3 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 3,
the glyph sets defined in the different Coverage tables may intersect, unlike Format 2 which specifies fixed
class assignments (identical for each position in the backtrack, input, or lookahead sequence) and exclusive
classes (a glyph cannot be in more than one class at a time).
NOTE The order of the Coverage tables listed in the Coverage array must follow the writing direction. For text written
from right to left, then the right-most glyph will be first. Conversely, for text written from left to right, the left-most glyph will
be first.

The subtable also contains a count of the substitutions to be performed on the input Coverage sequence
(SubstCount) and an array of SubstLookupRecords (SubstLookupRecord) in design order: that is, the order in
which lookups should be applied to the entire glyph sequence. (SubstLookupRecords are described next.)

ChainContextSubstFormat3 subtable: Coverage-based chaining context glyph substitution

Type Name Description

uint16 SubstFormat Format identifier-format = 3

ISO/IEC FDIS 14496-22:2006(E)

234 © ISO/IEC 2006 — All rights reserved

uint16 BacktrackGlyphCount Number of glyphs in the backtracking sequence

Offset Coverage[BacktrackGlyphCount] Array of Offsets to coverage tables in backtracking sequence, in
glyph sequence order

uint16 InputGlyphCount Number of glyphs in input sequence

Offset Coverage[InputGlyphCount] Array of Offsets to coverage tables in input sequence, in glyph
sequence order

uint16 LookaheadGlyphCount Number of glyphs in lookahead sequence

Offset Coverage[LookaheadGlyphCount] Array of Offsets to coverage tables in lookahead sequence, in glyph
sequence order

uint16 SubstCount Number of SubstLookupRecords

struct SubstLookupRecord
[SubstCount]

Array of SubstLookupRecords, in design order

LookupType 7: Extension Substitution

This lookup provides a mechanism whereby any other lookup type's subtables are stored at a 32-bit Offset
location in the 'GSUB' table. This is needed if the total size of the subtables exceeds the 16-bit limits of the
various other Offsets in the 'GSUB' table. In this specification, the subtable stored at the 32-bit Offset location
is termed the "extension" subtable.

ExtensionSubstFormat1 subtable

Type Name Description

USHORT SubstFormat Format identifier. Set to 1.

USHORT ExtensionLookupType Lookup type of subtable referenced by ExtensionOffset (i.e. the extension
subtable).

ULONG ExtensionOffset Offset to the extension subtable, of lookup type ExtensionLookupType, relative
to the start of the ExtensionSubstFormat1 subtable.

ExtensionLookupType must be set to any lookup type other than 7. All subtables in a LookupType 7 lookup
must have the same ExtensionLookupType. All Offsets in the extension subtables are set in the usual way, i.e.
relative to the extension subtables themselves.

When an OFF layout engine encounters a LookupType 7 Lookup table, it shall:

• Proceed as though the Lookup table's LookupType field were set to the ExtensionLookupType of the
subtables.

• Proceed as though each extension subtable referenced by ExtensionOffset replaced the LookupType
7 subtable that referenced it.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 235

Substitution Lookup Record

All contextual substitution subtables specify the substitution data in a Substitution Lookup Record
(SubstLookupRecord). Each record contains a SequenceIndex, which indicates the position where the
substitution will occur in the glyph sequence. In addition, a LookupListIndex identifies the lookup to be applied
at the glyph position specified by the SequenceIndex.

The contextual substitution subtables defined in Examples 7, 8, and 9 at the end of this clause show
SubstLookupRecords.

LookupType 8: Reverse Chaining Contextual Single Substitution Subtable

Reverse Chaining Contextual Single Substitution subtable (ReverseChainSingleSubst) describes single glyph
substitutions in context with an ability to look back and/or look ahead in the sequence of glyphs. The major
difference between this and other lookup types is that processing of input glyph sequence goes from end to
start. Comparing to Chaining Contextual Sustitution this format is restricted to only coverage based subtable
format, input sequence could contain only single glyph and only single substitution allowed on this glyph. This
substitution rule is integrated into subtable format.

This lookup type is designed specifically for the Arabic script writing styles, like nastaliq, where the shape of
the glyph is determined by the following glyph, beginning at the last glyph of the "joor", or set of connected
glyphs. An example of this lookup type is defined in Example 10 at the end of this clause.

Reverse Chaining Contextual Single Substitution Format 1: Coverage Based Reverse Chaining
Contextual Single Glyph Substitution.

Format 1 defines a chaining context rule as a sequence of Coverage tables. Each position in the sequence
may define a different Coverage table for the set of glyphs that matches the context pattern. With Format 1,
the glyph sets defined in the different Coverage tables may intersect.
NOTE Despite reverse order processing, the order of the Coverage tables listed in the Coverage array must be in
logical order (follow the writing direction). The backtrack sequence is as illustrated in the LookupType 6: Chaining
Contextual Substitution subtable. The input sequence is one glyph located at i in the logical string. The backtrack begins at
i - 1 and increases in Offset value as one moves toward the logical beginning of the string. The lookahead sequence
begins at i + 1 and increases in Offset value as one moves toward the logical end of the string. In the reverse chaining
process i began at the logical end of the string and moves to the beginning.

The subtable contains Coverage table for input glyph and Coverage table arrays for lookahead and backtrack
sequences, also count of output glyph indices in the Substitute array (GlyphCount), and a list of the output
glyph indices (Substitute array). The Substitute array must contain the same number of glyph indices as the
Coverage table. To locate the corresponding output glyph index in the Substitute array, this format uses the
Coverage Index returned from the Coverage table.

ReverseChainSingleSubstFormat1 subtable: Coverage-based Reverse Chaining Contextual Single Glyph
substitution.

Type Name Description

uint16 SubstFormat Format identifier-format = 1

Offset Coverage Offset to Coverage table - from beginning of Substitution table

uint16 BacktrackGlyphCount Number of glyphs in the backtracking sequence

Offset Coverage[BacktrackGlyphCount] Array of Offsets to coverage tables in backtracking sequence, in
glyph sequence order

ISO/IEC FDIS 14496-22:2006(E)

236 © ISO/IEC 2006 — All rights reserved

uint16 LookaheadGlyphCount Number of glyphs in lookahead sequence

Offset Coverage[LookaheadGlyphCount] Array of Offsets to coverage tables in lookahead sequence, in
glyph sequence order

uint16 GlyphCount Number of GlyphIDs in the Substitute array

GlyphID Substitute[GlyphCount] Array of substitute GlyphIDs-ordered by Coverage Index

5.3.4.4 GSUB – Subtable Examples

The rest of this clause describes and illustrates examples of all the GSUB subtables, including each of the
three formats available for contextual substitutions. All the examples reflect unique parameters described
below, but the samples provide a useful reference for building subtables specific to other situations.

All the examples have three columns showing hex data, source, and comments.

Example 1: GSUB Header Table

Example 1 shows a typical GSUB Header table definition.

Example 1

Hex Data Source Comments

 GSUBHeader
TheGSUBHeader GSUBHeader table definition

00010000 0x00010000 Version

000A TheScriptList Offset to ScriptList table

001E TheFeatureList Offset to FeatureList table

002C TheLookupList Offset to LookupList table

Example 2: SingleSubstFormat1 Subtable

Example 2 illustrates the SingleSubstFormat1 subtable , which uses ranges to replace single input glyphs with
their corresponding output glyphs. The indices of the output glyphs are calculated by adding a constant delta
value to the indices of the input glyphs. In this example, the Coverage table has a format identifier of 1 to
indicate the range format, which is used because the input glyph indices are in consecutive order in the font.
The Coverage table specifies one range that contains a StartGlyphID for the "0" (zero) glyph and an
EndGlyphID for the "9" glyph.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 237

Example 2

Hex Data Source Comments

 SingleSubstFormat1
LiningNumeralSubtable SingleSubst subtable definition

0001 1 SubstFormat, ranges

0006 LiningNumeralCoverage Offset to Coverage table for input glyphs

00C0 192 DeltaGlyphID = 192, add to each input glyph index to produce output
glyph index

 CoverageFormat2
LiningNumeralCoverage Coverage table definition

0002 2 CoverageFormat, ranges

 1 RangeCount
RangeRecord[0]

004E 78 Start GlyphID for numeral zero glyph

0058 87 End GlyphID for numeral nine glyph

0000 0 StartCoverageIndex first CoverageIndex = 0

Example 3: SingleSubstFormat2 Subtable

Example 3 uses the SingleSubstFormat2 subtable for lists to substitute punctuation glyphs in Japanese text
that is written vertically. Horizontally oriented parentheses and square brackets (the input glyphs) are replaced
with vertically oriented parentheses and square brackets (the output glyphs).

The Coverage table, Format 1, identifies each input glyph index. The number of input glyph indices listed in
the Coverage table matches the number of output glyph indices listed in the subtable. For correct substitution,
the order of the glyph indices in the Coverage table (input glyphs) must match the order in the Substitute array
(output glyphs).

Example 3

Hex
Data

Source Comments

 SingleSubstFormat2
VerticalPunctuationSubtable SingleSubst subtable definition

0002 2 SubstFormat lists

ISO/IEC FDIS 14496-22:2006(E)

238 © ISO/IEC 2006 — All rights reserved

000E VerticalPunctuationCoverage Offset to Coverage table

0004 4 GlyphCount, equals GlyphCount in Coverage table

0131 VerticalOpenBracketGlyph Substitute[0], ordered by Coverage Index

0135 VerticalClosedBracketGlyph Substitute[1]

013E VerticalOpenParenthesisGlyph Substitute[2]

0143 VerticalClosedParenthesisGlyph Substitute[3]

 CoverageFormat1
VerticalPunctuationCoverage Coverage table definition

0001 1 CoverageFormat lists

0004 4 GlyphCount

003C HorizontalOpenBracketGlyph GlyphArray[0], ordered by GlyphID

0040 HorizontalClosedBracketGlyph GlyphArray[1]

004B HorizontalOpenParenthesisGlyph GlyphArray[2]

004F HorizontalClosedParenthesisGlyph GlyphArray[3]

Example 4: MultipleSubstFormat1 Subtable

Example 4 uses a MultipleSubstFormat1 subtable to replace a single "ffi" ligature with three individual glyphs
that form the string <ffi>. The subtable defines a format identifier of 1, an Offset to a Coverage table that
specifies the glyph index of the "ffi" ligature (the input glyph), an Offset to a Sequence table that specifies the
sequence of glyph indices for the <ffi> string in its substitute array (the output glyph sequence), and a count of
Sequence table Offsets.

Example 4

Hex Data Source Comments

 MultipleSubstFormat1
FfiDecompSubtable MultipleSubst subtable definition

0001 1 SubstFormat

0008 FfiDecompCoverage Offset to Coverage table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 239

0001 1 SequenceCount, equals GlyphCount in Coverage table

000E FfiDecompSequence Offset to Sequence[0] table

 CoverageFormat1
FfiDecompCoverage Coverage table definition

0001 1 CoverageFormat lists

0001 1 GlyphCount

00F1 ffiGlyphID ligature glyph

 Sequence
FfiDecompSequence Sequence table definition

0003 3 GlyphCount

001A fGlyphID first glyph in sequence order

001A fGlyphID second glyph

001D iGlyphID third glyph

Example 5: AlternateSubstFormat 1 Subtable

Example 5 uses the AlternateSubstFormat1 subtable to replace the default ampersand glyph (input glyph)
with one of two alternative ampersand glyphs (output glyph).

In this case, the Coverage table specifies the index of a single glyph, the default ampersand, because it is the
only glyph covered by this lookup. The AlternateSet table for this covered glyph identifies the alternative
glyphs: AltAmpersand1GlyphID and AltAmpersand2GlyphID.

In Example 5, the index position of the AlternateSet table Offset in the AlternateSet array is zero (0), which
correlates with the index position (also zero) of the default ampersand glyph in the Coverage table.

Example 5

Hex Data Source Comments

 AlternateSubstFormat1
AltAmpersandSubtable AlternateSubstFormat1 subtable definition

0001 1 SubstFormat

0008 AltAmpersandCoverage Offset to Coverage table

ISO/IEC FDIS 14496-22:2006(E)

240 © ISO/IEC 2006 — All rights reserved

0001 1 AlternateSetCnt, equals GlyphCount in Coverage table

000E AltAmpersandSet Offset to AlternateSet[0] table

 CoverageFormat1
AltAmpersandCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

003A DefaultAmpersandGlyphID GlyphArray[0]

 AlternateSet
AltAmpersandSet AlternateSet table definition

0002 2 GlyphCount

00C9 AltAmpersand1GlyphID Offset to Alternate[0], in arbitrary order

00CA AltAmpersand2GlyphID Offset to Alternate[1]

Example 6: LigatureSubstFormat1 Subtable

Example 6 shows a LigatureSubstFormat1 subtable that defines data to replace a string of glyphs with a
single ligature glyph. Because a LigatureSubstFormat1 subtable can specify glyph substitutions for more than
one ligature, this subtable defines three ligatures: "etc," "ffi," and "fi."

The sample subtable contains a format identifier (4) and an Offset to a Coverage table. The Coverage table,
which lists an index for each first glyph in the ligatures, lists indices for the "e" and "f" glyphs. The Coverage
table range format is used here because the "e" and "f" glyph indices are numbered consecutively.

In the LigatureSubst subtable, LigSetCount specifies two LigatureSet tables, one for each covered glyph, and
the LigatureSet array stores Offsets to them. In this array, the "e" LigatureSet precedes the "f" LigatureSet,
matching the order of the corresponding first-glyph components in the Coverage table.

Each LigatureSet table identifies all ligatures that begin with a covered glyph. The sample LigatureSet table
defined for the "e" glyph contains only one ligature, "etc." A LigatureSet table defined for the "f" glyph contains
two ligatures, "ffi" and "fi."

The sample FLigaturesSet table has Offsets to two Ligature tables, one for "ffi" and one for "fi." The Ligature
array lists the "ffi" Ligature table first to indicate that the "ffi" ligature is preferred to the "fi" ligature.

Example 6

Hex Data Source Comments

 LigatureSubstFormat1 LigatureSubstFormat1 subtable definition

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 241

LigaturesSubtable

0001 1 SubstFormat

000A LigaturesCoverage Offset to Coverage table

0002 2 LigSetCount

0014 ELigaturesSet Offset to LigatureSet[0] table in Coverage Index order

0020 FLigaturesSet Offset to LigatureSet[1] table

 CoverageFormat2
LigaturesCoverage Coverage table definition

0002 2 CoverageFormat, ranges

0001 1 RangeCount
RangeRecord[0]

0019 eGlyphID Start, first GlyphID

001A fGlyphID End, last GlyphID in range

0000 0 StartCoverageIndex, coverage index of start glyphID

 LigatureSet
ELigaturesSet

LigatureSet table definition
all ligatures that start with e

0001 1 LigatureCount

0004 etcLigature Offset to Ligature[0] table

 Ligature
etcLigature Ligature table definition

015B etcGlyphID LigGlyph, output GlyphID

0003 3 CompCount number of components

0028 tGlyphID Component[1], second component in ligature

0017 cGlyphID Component[2], third component in ligature

ISO/IEC FDIS 14496-22:2006(E)

242 © ISO/IEC 2006 — All rights reserved

 LigatureSet
FLigaturesSet

LigatureSet table definition all ligatures start with f

0002 2 LigatureCount

0006 ffiLigature Offset to Ligature[0] table, listed first because ffi ligature is preferred to fi
ligature

000E fiLigature Offset to Ligature[1] table

 Ligature
ffiLigature

Ligature table definition

00F1 ffiGlyphID LigGlyph, output GlyphID

0003 3 CompCount

001A fGlyphID Component[1], second component in ligature

001D iGlyphID Component[2], third component in ligature

 Ligature
fiLigature Ligature table definition

00F0 fiGlyphID LigGlyph, output GlyphID

0002 2 CompCount

001D iGlyphID Component[1] second component in ligature

Example 7: ContextSubstFormat1 Subtable and SubstLookupRecord

Example 7 uses a ContextSubstFormat1 subtable for glyph sequences to replace a string of three glyphs with
another string. For the French language system, the subtable defines a contextual substitution that replaces
the input sequence, space-dash-space, with the output sequence, thin space-dash-thin space.

The contextual substitution, called Dash Lookup in this example, contains one ContextSubstFormat1 subtable
called the DashSubtable. The subtable specifies two contexts: a SpaceGlyph followed by a DashGlyph, and a
DashGlyph followed by a SpaceGlyph. In each sequence, a single substitution replaces the SpaceGlyph with
a ThinSpaceGlyph.

The Coverage table, labeled DashCoverage, lists two GlyphIDs for the first glyphs in the SpaceGlyph and
DashGlyph sequences. One SubRuleSet table is defined for each covered glyph.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 243

SpaceAndDashSubRuleSet lists all the contexts that begin with a SpaceGlyph. It contains an Offset to one
SubRule table (SpaceAndDashSubRule), which specifies two glyphs in the context sequence, the second of
which is a DashGlyph. The SubRule table contains an Offset to a SubstLookupRecord that lists the position in
the sequence where the glyph substitution should occur (position 0) and the index of the
SpaceToThinSpaceLookup applied there to replace the SpaceGlyph with a ThinSpaceGlyph.
DashAndSpaceSubRuleSet lists all the contexts that begin with a DashGlyph. An Offset to a SubRule table
(DashAndSpaceSubRule) specifies two glyphs in the context sequence, and the second one is a SpaceGlyph.
The SubRule table contains an Offset to a SubstLookupRecord, which lists the position in the sequence where
the glyph substitution should occur, and an index to the same lookup used in the SpaceAndDashSubRule.
The lookup replaces the SpaceGlyph with a ThinSpaceGlyph.

Example 7

Hex Data Source Comments

 ContextSubstFormat1
DashSubtable

ContextSubstFormat1 subtable definition for Lookup[0], DashLookup

0001 1 SubstFormat

000A DashCoverage Offset to Coverage table

0002 2 SubRuleSetCount

0012 SpaceAndDashSubRuleSet Offset to SubRuleSet[0], ordered by Coverage Index

0020 DashAndSpaceSubRuleSet Offset to SubRuleSet[1]

 CoverageFormat1
DashCoverage Coverage table definition

0001 1 CoverageFormat lists

0002 2 GlyphCount

0028 SpaceGlyph GlyphArray[0], in numeric order

005D DashGlyph GlyphArray[1], dash GlyphID

 SubRuleSet
SpaceAndDashSubRuleSet SubRuleSet[0] table definition

0001 1 SubRuleCount

0004 SpaceAndDashSubRule Offset to SubRule[0], ordered by preference

ISO/IEC FDIS 14496-22:2006(E)

244 © ISO/IEC 2006 — All rights reserved

 SubRule
SpaceAndDashSubRule SubRule[0] table definition

0002 2 GlyphCount number in input sequence

0001 1 SubstCount

005D DashGlyph Input[1], starting with second glyph SpaceGlyph in Coverage table is first
glyph
SubstLookupRecord[0]

0000 0 SequenceIndex substitution at first glyph position (0)

0001 1 LookupListIndex index for SpaceToThinSpaceLookup in LookupList

 SubRuleSet
DashAndSpaceSubRuleSet SubRuleSet[0] table definition

0001 1 SubRuleCount

0004 DashAndSpaceSubRule Offset to SubRule[0], ordered by preference

 SubRule
DashAndSpaceSubRule SubRule[0] table definition

0002 2 GlyphCount number in the input glyph sequence

0001 1 SubstCount

0028 SpaceGlyph Input[1], starting with second glyph SubstLookupRecord definition

0001 1 SequenceIndex substitution at second glyph position(1)

0001 1 LookupListIndex for SpaceToThinSpaceLookup

Example 8: ContextSubstFormat2 Subtable

Example 8 uses a ContextSubstFormat2 subtable with glyph classes to replace default mark glyphs with their
alternative forms. Glyph alternatives are selected depending upon the height of the base glyph that they
combine with-that is, the mark glyph used above a high base glyph differs from the mark glyph above a very
high base glyph.

In the example, SetMarksHighSubtable contains a Class table that defines four glyph classes: medium-height
glyphs (Class 0), all default mark glyphs (Class 1), high glyphs (Class 2), and very high glyphs (Class 3). The

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 245

subtable also contains a Coverage table that lists each base glyph that functions as a first component in a
context, ordered by glyph index.

Two SubClassSets are defined, one for substituting high marks and one for very high marks. No
SubClassSets are specified for Class 0 and Class 1 glyphs because no contexts begin with glyphs from these
classes. The SubClassSet array lists SubClassSets in numerical order, so SubClassSet 2 precedes
SubClassSet 3.

Within each SubClassSet, a SubClassRule is defined. In SetMarksHighSubClassSet2, the SubClassRule
table specifies two glyphs in the context, the first glyph in Class 2 (a high glyph) and the second in Class 1 (a
mark glyph). The SubstLookupRecord specifies applying SubstituteHighMarkLookup at the second position in
the sequence-that is, a high mark glyph will replace the default mark glyph.

In SetMarksVeryHighSubClassSet3, the SubClassRule specifies two glyphs in the context, the first in Class 3
(a very high glyph) and the second in Class 1 (a mark glyph). The SubstLookupRecord specifies applying
SubstituteVeryHighMarkLookup at the second position in the sequence-that is, a very high mark glyph will
replace the default mark glyph.

Example 8

Hex
Data

Source Comments

 ContextSubstFormat2
SetMarksHighSubtable ContextSubstFormat2 subtable definition

0002 2 SubstFormat

0010 SetMarksHighCoverage Offset to Coverage table

001C SetMarksHighClassDef Offset to Class Def table

0004 4 SubClassSetCnt

0000 NULL Offset to SubClassSet[0] table, no contexts that begin with Class 0
glyphs are defined

0000 NULL Offset to SubClassSet[1] table no contexts that begin with Class 1
glyphs are defined

0032 SetMarksHighSubClassSet2 Offset to SubClassSet[2] table for contexts that begin with Class 2
glyphs (high base glyphs)

0040 SetMarksVeryHighSubClassSet3 Offset to SubClassSet[3] table for contexts that begin with Class 3
glyphs (very high base glyphs)

 CoverageFormat1
SetMarksHighCoverage Coverage table definition

0001 1 CoverageFormat, lists

ISO/IEC FDIS 14496-22:2006(E)

246 © ISO/IEC 2006 — All rights reserved

0004 4 GlyphCount

0030 tahGlyphID GlyphArray[0], high base glyph

0031 dhahGlyphID GlyphArray[1], high base glyph

0040 cafGlyphID GlyphArray[2], very high base glyph

0041 gafGlyphID GlyphArray[3], very high base glyph

 ClassDefFormat2
SetMarksHighClassDef Class table definition

0002 2 Class Format, ranges

0003 3 ClassRangeCount ClassRange[0] ordered by StartGlyphID for Class
2, high base glyphs

0030 tahGlyphID Start, first Glyph ID in range

0031 dhahGlyphID End, last Glyph ID in range

0002 2 Class
ClassRange[1] for Class 3, very high base glyphs

0040 cafGlyphID Start, first Glyph ID in the range

0041 gafGlyphID End, last Glyph ID in the range

0003 3 Class
ClassRange[2] for Class 1, mark gyphs

00D2 fathatanDefaultGlyphID Start, first Glyph ID in range default fathatan mark

00D3 dammatanDefaultGlyphID End, last Glyph ID in the range default dammatan mark

0001 1 Class

 SubClassSet
SetMarksHighSubClassSet2

SubClassSet[2] table definition
all contexts that begin with Class 2 glyphs

0001 1 SubClassRuleCnt

0004 SetMarksHighSubClassRule2 Offset to SubClassRule[0] table ordered by preference

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 247

 SubClassRule
SetMarksHighSubClassRule2

SubClassRule[0] table definition, Class 2 glyph (high base) glyph
followed by a Class 1 glyph (mark)

0002 2 GlyphCount

0001 1 SubstCount

0001 1 Offset to Class[1], beginning with the second Class in the context
sequence (mark = Class 1) begin SubstLookupRecord array in design
order SubstLookupRecord[0]

0001 1 SequenceIndex, apply substitution to position 2, a mark

0001 1 LookupListIndex

 SubClassSet
SetMarksVeryHighSubClassSet3

SubClassSet[3] table definition all contexts that begin with Class 3
glyphs

0001 1 SubClassRuleCnt

0004 SetMarksVeryHighSubClassRule3 Offset to SubClassRule[0] table ordered by preference

 SubClassRule
SetMarksVeryHighSubClassRule3

SubClassRule[0] table definition Class 3 glyph (very high base glyph)
followed by a Class 1 glyph (mark)

0002 2 GlyphCount

0001 1 SubstCount

0001 1 Offset to Class[1], beginning with the second Class in the context
sequence = marks, Class 1 begin SubstLookupRecord array in design
order SubstLookupRecord[0]

0001 1 SequenceIndex, apply substitution to position 2, second glyph class
(mark)

0002 2 LookupListIndex

Example 9: ContextualSubstFormat3 Subtable

Example 9 uses the ContextSubstFormat3 subtable with Coverage tables to describe a context sequence of
three lowercase glyphs in the pattern: any ascender or descender glyph in position 0 (zero), any x-height
glyph in position 1, and any descender glyph in position 2. The overlapping sets of covered glyphs for
positions 0 and 2 make Format 3 better for this context than the class-based Format 2.

ISO/IEC FDIS 14496-22:2006(E)

248 © ISO/IEC 2006 — All rights reserved

In positions 0 and 2, swash versions of the glyphs replace the default glyphs. The contextual-substitution
lookup is SwashLookup (LookupList index = 0), and its subtable is SwashSubtable. The SwashSubtable
defines three Coverage tables: AscenderDescenderCoverage, XheightCoverage, and DescenderCoverage-
one for each glyph position in the context sequence, respectively.

The SwashSubtable also defines two SubstLookupRecords: one that applies to position 0, and one for
position 2. (No substitutions are applied to position 1.) The record for position 0 uses a single substitution
lookup called AscDescSwashLookup to replace the current ascender or descender glyph with a swash
ascender or descender glyph. The record for position 2 uses a single substitution lookup called
DescSwashLookup to replace the current descender glyph with a swash descender glyph.

Example 9

Hex Data Source Comments

 ContextSubstFormat3
SwashSubtable ContextSubstFormat3 subtable definition

0003 3 SubstFormat

0003 3 GlyphCount in input glyph sequence

0002 2 SubstCount

0030 AscenderDescenderCoverage Offset to Coverage[0] table in context sequence order

004C XheightCoverage Offset to Coverage[1] table

006E DescenderCoverage Offset to Coverage[2] table SubstLookupRecord[0] in glyph position
order

0000 0 SequenceIndex

0001 1 LookupListIndex, single substitution to output ascender or descender
swash SubstLookupRecord[1]

0002 2 SequenceIndex

0002 2 LookupListIndex single substitution to output descender swash

 CoverageFormat1
AscenderDescenderCoverage Coverage table definition

0001 1 CoverageFormat, lists

000C 12 GlyphCount

0033 bGlyphID GlyphArray[0] in GlyphID order

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 249

0035 dGlyphID GlyphArray[1]

0037 fGlyphID GlyphArray[2]

0038 gGlyphID GlyphArray[3]

0039 hGlyphID GlyphArray[4]

003B jGlyphID GlyphArray[5]

003C kGlyphID GlyphArray[6]

003D lGlyphID GlyphArray[7]

0041 pGlyphID GlyphArray[8]

0042 qGlyphID GlyphArray[9]

0045 tGlyphID GlyphArray[10]

004A yGlyphID GlyphArray[11]

 CoverageFormat1
XheightCoverage Coverage table definition

0001 1 CoverageFormat, lists

000F 15 GlyphCount

0032 aGlyphID GlyphArray[0] in GlyphID order

0034 cGlyphID GlyphArray[1]

0036 eGlyphID GlyphArray[2]

003A iGlyphID GlyphArray[3]

003E mGlyphID GlyphArray[4]

003F nGlyphID GlyphArray[5]

0040 oGlyphID GlyphArray[6]

0043 rGlyphID GlyphArray[7]

0044 sGlyphID GlyphArray[8]

ISO/IEC FDIS 14496-22:2006(E)

250 © ISO/IEC 2006 — All rights reserved

0045 tGlyphID GlyphArray[9]

0046 uGlyphID GlyphArray[10]

0047 vGlyphID GlyphArray[11]

0048 wGlyphID GlyphArray[12]

0049 xGlyphID GlyphArray[13]

004B zGlyphID GlyphArray[14]

 CoverageFormat1
DescenderCoverage Coverage table definition

0001 1 CoverageFormat, lists

0005 5 GlyphCount

0038 gGlyphID GlyphArray[0] in GlyphID order

003B jGlyphID GlyphArray[1]

0041 pGlyphID GlyphArray[2]

0042 qGlyphID GlyphArray[3]

004A yGlyphID GlyphArray[4]

Example 10: ReverseChainSingleSubstFormat1 Subtable and SubstLookupRecord

Example 10 uses a ReverseChainSingleSubstFormat1 subtable for glyph sequences to glyph with the correct
form that has a thick connection to the left (thick exit). This allow the glyph to correctly connect to the letter
form to the left of it.

The ThickExitCoverage table is the listing of glyphs to be matched for substitution.

The LookaheadCoverage table, labeled ThickEntryCoverage, lists four GlyphIDs for the glyph following a
substitution coverage glyph. This lookahead coverage attempts to match the context that will cause the
substitution to take place.

The Substitute table maps the glyphs to replace those in the ThickConnectCoverage table.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 251

Example 10

Hex
Data

Source Comments

 ReverseChainSingleSubstFormat1
ThickConnect

ReverseChainSingleSubstFormat1 subtable definition

0001 1 SubstFormat

0068 ThickExitCoverage Offset to Coverage table

0000 0 BacktrackGlyphCount

0000 null - not used Offset to BacktrackCoverage[0]

0001 1 LookaheadGlyphCount

0026 ThickEntryCoverage Offset to LookaheadCoverage[0]

000C 12 GlyphCount

00A7 BEm2 Substitute[0], ordered by Coverage Index

00B9 BEi3 Substitute[1]

00C5 JIMm3 Substitute[2]

00D4 JIMi2 Substitute[3]

00EA SINm2 Substitute[4]

00F2 SINi2 Substitute[5]

00FD SADm2 Substitute[6]

010D SADi2 Substitute[7]

011B TOEm3 Substitute[8]

012B TOEi3 Substitute[9]

013B AINm2 Substitute[10]

0141 AINi2 Substitute[11]

ISO/IEC FDIS 14496-22:2006(E)

252 © ISO/IEC 2006 — All rights reserved

 CoverageFormat1
ThickEntryCoverage

Coverage table definition

0001 1 CoverageFormat, lists

001F 31 GlyphCount

00A5 ALEFf1 GlyphArray[0], in GlyphID order

00A9 BEm4 GlyphArray[1]

00AA BEm5 GlyphArray[2]

00E2 DALf1 GlyphArray[3]

0167 KAFf1 GlyphArray[4]

0168 KAFfs1 GlyphArray[5]

0169 KAFm1 GlyphArray[6]

016D KAFm5 GlyphArray[7]

016E KAFm6 GlyphArray[8]

0170 KAFm8 GlyphArray[9]

0183 GAFf1 GlyphArray[10]

0184 GAFfs1 GlyphArray[11]

0185 GAFm1 GlyphArray[12]

0189 GAFm5 GlyphArray[13]

018A GAFm6 GlyphArray[14]

018C GAFm8 GlyphArray[15]

019F LAMf1 GlyphArray[16]

01A0 LAMm1 GlyphArray[17]

01A1 LAMm2 GlyphArray[18]

01A2 LAMm3 GlyphArray[19]

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 253

01A3 LAMm4 GlyphArray[20]

01A4 LAMm5 GlyphArray[21]

01A5 LAMm6 GlyphArray[22]

01A6 LAMm7 GlyphArray[23]

01A7 LAMm8 GlyphArray[24]

01A8 LAMm9 GlyphArray[25]

01A9 LAMm10 GlyphArray[26]

01AA LAMm11 GlyphArray[27]

01AB LAMm12 GlyphArray[28]

01AC LAMm13 GlyphArray[29]

01EC HAYf2 GlyphArray[30]

 CoverageFormat1
ThickExitCoverage Coverage table definition

0001 1 CoverageFormat, lists

000C 12 GlyphCount

00A6 BEm1 GlyphArray[0], ordered by GlyphID

00B7 BEi1 GlyphArray[1]

00C3 JIMm1 GlyphArray[2]

00D2 JIMi1 GlyphArray[3]

00E9 SINm1 GlyphArray[4]

00F1 SINi1 GlyphArray[5]

00FC SADm1 GlyphArray[6]

010C SADi1 GlyphArray[7]

0119 TOEm1 GlyphArray[8]

ISO/IEC FDIS 14496-22:2006(E)

254 © ISO/IEC 2006 — All rights reserved

0129 TOEi1 GlyphArray[9]

013A AINm1 GlyphArray[10]

0140 AINi1 GlyphArray[11]

5.3.5 JSTF – The Justification Table

5.3.5.1 JSTF Table Overview

The Justification table (JSTF) provides font developers with additional control over glyph substitution and
positioning in justified text. Text-processing clients now have more options to expand or shrink word and glyph
spacing so text fills the specified line length.

When justifying text, the text-processing client distributes the characters in each line to completely fill the
specified line length. Whether removing space to fit more characters in the line or adding more space to
spread the characters, justification can produce large gaps between words, cramped or extended glyph
spacing, uneven line break patterns, and other jarring visual effects. For example:

Figure 39 – Poorly justified text

To offset these effects, text-processing clients have used justification algorithms that redistribute the space
with a series of glyph spacing adjustments that progress from least to most obvious. Typically, the client will
begin by expanding or compressing the space between words. If these changes aren't enough or look
distracting, the client might hyphenate the word at the end of the line or adjust the space between glyphs in
one or more lines.

To disguise spacing inconsistencies so they won't disrupt the flow of text for a reader, the font developer can
use the JSTF table to enable or disable individual glyph substitution and positioning actions that apply to
specific scripts, language systems, and glyphs in the font.

For instance, a ligature glyph can replace multiple glyphs, shortening the line of text with an unobtrusive,
localized adjustment (see Figure 40). Font-specific positioning changes can be applied to particular glyphs in
a text line that combines two or more fonts. Other options include repositioning the individual glyphs in the line,
expanding the space between specific pairs of glyphs, and decreasing the spacing within particular glyph
sequences.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 255

Figure 40 – JSTF shortens the top line of this example by using the "ffi" ligature

The font designer or developer defines JSTF data as prioritized suggestions. Each suggestion lists the
particular actions that the client can use to adjust the line of text. Justification actions may apply to both
vertical and horizonal text.

5.3.5.2 Table Organization and Structure

The JSTF table organizes data by script and language system, as do the GSUB and GPOS tables. The JSTF
table begins with a header that lists scripts in an array of JstfScriptRecords (see Figure 41). Each record
contains a ScriptTag and an Offset to a JstfScript table that contains script and language-specific data:

• A default justification language system table (DefJstfLangSys) defines script-specific data that applies
to the entire script in the absence of any language-specific information.

• A justification language system table (JstfLangSys) stores the justification data for each language
system.

Figure 41 – High-level organization of JSTF table

A JstfLangSys table contains a list of justification suggestions. Each suggestion consists of a list of GSUB or
GPOS LookupList indices to lookups that may be enabled or disabled to add or remove space in the line of
text. In addition, each suggestion can include a set of dedicated justification lookups with maximum
adjustment values to extend or shrink the amount of space.

The font developer prioritizes suggestions based on how they affect the appearance and function of the text
line, and the client applies the suggestions in that order. Low-numbered (high-priority) suggestions correspond
to "least bad" options.

Each script also may supply a list of extender glyphs, such as kashidas in Arabic. A client may use the
extender glyphs in addition to the justification suggestions.

ISO/IEC FDIS 14496-22:2006(E)

256 © ISO/IEC 2006 — All rights reserved

A client begins justifying a line of text only after implementing all selected GSUB and GPOS features for the
string. Starting with the lowest-numbered suggestion, the client enables or disables the lookups specified in
the JSTF table, reassembles the lookups in the LookupList order, and applies them to each glyph in the string
one after another. If the line still is not the correct length, the client processes the next suggestion in
ascending order of priority. This continues until the line length meets the justification requirements.
NOTE If any JSTF suggestion at any priority level modifies a GSUB or GPOS lookup that was previously applied to
the glyph string, then the text processing client must apply the JSTF suggestion to an unmodified version of the glyph
string.

The rest of this clause describes the tables and records used by the JSTF table for scripts and language
systems:

• Script information includes the JstfScript table (plus its associated JstfLangSysRecords) and the
ExtenderGlyph table.

• Language system information includes the JstfLangSys table, JstfPriority table (and its associated
JstfDataRecord), the JstfModList table, and the JstfMax table.

JSTF Header

The JSTF table begins with a header that contains a version number for the table (Version), a count of the
number of scripts used in the font (JstfScriptCount), and an array of records (JstfScriptRecord). Each record
contains a script tag (JstfScriptTag) and an Offset to a JstfScript table (JstfScript).
NOTE The JstfScriptTags must correspond with the ScriptTags listed in the GSUB and GPOS tables.

Example 1 at the end of this clause shows a JSTF Header table and JstfScriptRecord.

JSTF header

Type Name Description

fixed32 Version Version of the JSTF table-initially set to 0x00010000

uint16 JstfScriptCount Number of JstfScriptRecords in this table

struct JstfScriptRecord[JstfScriptCount] Array of JstfScriptRecords-in alphabetical order, by JstfScriptTag

JstfScriptRecord

Type Name Description

Tag JstfScriptTag 4-byte JstfScript identification

Offset JstfScript Offset to JstfScript table-from beginning of JSTF Header

Justification Script Table

A Justification Script (JstfScript) table describes the justification information for a single script. It consists of an
Offset to a table that defines extender glyphs (ExtenderGlyph), an Offset to a default justification table for the
script (DefJstfLangSys), and a count of the language systems that define justification data (JstfLangSysCount).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 257

If a script uses the same justification information for all language systems, the font developer defines only the
DefJstfLangSys table and sets the JstfLangSysCount to zero (0). However, if any language system has
unique justification suggestions, JstfLangSysCount will be a positive value, and the JstfScript table must
include an array of records (JstfLangSysRecord), one for each language system. Each JstfLangSysRecord
contains a language system tag (JstfLangSysTag) and an Offset to a justification language system table
(JstfLangSys). In the JstfLangSysRecord array, records are ordered alphabetically by JstfLangSysTag.
NOTE No JstfLangSysRecord is defined for the default script data; the data is stored in the DefJstfLangSys table
instead.

Example 2 at the end of the clause shows a JstfScript table for the Arabic script and a JstfLangSysRecord for
the Farsi language system.

JstfScript table

Type Name Description

Offset ExtenderGlyph Offset to ExtenderGlyph table-from beginning of JstfScript table-may be NULL

Offset DefJstfLangSys Offset to Default JstfLangSys table-from beginning of JstfScript table-may be
NULL

uint16 JstfLangSysCount Number of JstfLangSysRecords in this table- may be zero (0)

struct JstfLangSysRecord
[JstfLangSysCount]

Array of JstfLangSysRecords-in alphabetical order, by JstfLangSysTag

JstfLangSysRecord

Type Name Description

Tag JstfLangSysTag 4-byte JstfLangSys identifier

Offset JstfLangSys Offset to JstfLangSys table-from beginning of JstfScript table

Extender Glyph Table

The Extender Glyph table (ExtenderGlyph) lists indices of glyphs, such as Arabic kashidas, that a client may
insert to extend the length of the line for justification. The table consists of a count of the extender glyphs for
the script (GlyphCount) and an array of extender glyph indices (ExtenderGlyph), arranged in increasing
numerical order.

Example 2 at the end of this clause shows an ExtenderGlyph table for Arabic kashida glyphs.

ExtenderGlyph table

Type Name Description

uint16 GlyphCount Number of Extender Glyphs in this script

GlyphID ExtenderGlyph[GlyphCount] GlyphIDs-in increasing numerical order

ISO/IEC FDIS 14496-22:2006(E)

258 © ISO/IEC 2006 — All rights reserved

Justification Language System Table

The Justification Language System (JstfLangSys) table contains an array of justification suggestions, ordered
by priority. A text-processing client doing justification should begin with the suggestion that has a zero (0)
priority, and then-as necessary-apply suggestions of increasing priority until the text is justified.

The font developer defines the number and the meaning of the priority levels. Each priority level stands alone;
its suggestions are not added to the previous levels. The JstfLangSys table consists of a count of the number
of priority levels (JstfPriorityCnt) and an array of Offsets to Justification Priority tables (JstfPriority), stored in
priority order. Example 2 at the end of the clause shows how to define a JstfLangSys table.

JstfLangSys table

Type Name Description

uint16 JstfPriorityCnt Number of JstfPriority tables

Offset JstfPriority[JstfPriorityCnt] Array of Offsets to JstfPriority tables-from beginning of JstfLangSys table-in
priority order

Justification Priority Table

A Justification Priority (JstfPriority) table defines justification suggestions for a single priority level. Each
priority level specifies whether to enable or disable GSUB and GPOS lookups or apply text justification
lookups to shrink and extend lines of text.

JstfPriority has Offsets to four tables with line shrinkage data: two are JstfGSUBModList tables for enabling
and disabling glyph substitution lookups, and two are JstfGPOSModList tables for enabling and disabling
glyph positioning lookups. Offsets to JstfGSUBModList and JstfGPOSModList tables also are defined for line
extension.

Example 3 at the end of this clause demonstrates two JstfPriority tables for two justification suggestions.

JstfPriority table

Type Name Description

Offset ShrinkageEnableGSUB Offset to Shrinkage Enable JstfGSUBModList table-from beginning of
JstfPriority table-may be NULL

Offset ShrinkageDisableGSUB Offset to Shrinkage Disable JstfGSUBModList table-from beginning of
JstfPriority table-may be NULL

Offset ShrinkageEnableGPOS Offset to Shrinkage Enable JstfGPOSModList table-from beginning of
JstfPriority table-may be NULL

Offset ShrinkageDisableGPOS Offset to Shrinkage Disable JstfGPOSModList table-from beginning of
JstfPriority table-may be NULL

Offset ShrinkageJstfMax Offset to Shrinkage JstfMax table-from beginning of JstfPriority table -may be
NULL

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 259

Offset ExtensionEnableGSUB Offset to Extension Enable JstfGSUBModList table-may be NULL

Offset ExtensionDisableGSUB Offset to Extension Disable JstfGSUBModList table-from beginning of
JstfPriority table-may be NULL

Offset ExtensionEnableGPOS Offset to Extension Enable JstfGSUBModList table-may be NULL

Offset ExtensionDisableGPOS Offset to Extension Disable JstfGSUBModList table-from beginning of
JstfPriority table-may be NULL

Offset ExtensionJstfMax Offset to Extension JstfMax table-from beginning of JstfPriority table -may be
NULL

Justification Modification List Tables

The Justification Modification List tables (JstfGSUBModList and JstfGPOSModList) contain lists of indices into
the lookup lists of either the GSUB or GPOS tables. The client can enable or disable the lookups to justify text.
For example, to increase line length, the client might disable a GSUB ligature substitution.

Each JstfModList table consists of a count of Lookups (LookupCount) and an array of lookup indices
(LookupIndex).

To justify a line of text, a text-processing client enables or disables the specified lookups in a JstfModList table,
reassembles the lookups in the LookupList order, and applies them to each glyph in the string one after
another.
NOTE If any JSTF suggestion at any priority level modifies a GSUB or GPOS lookup previously applied to the glyph
string, then the text-processing client must apply the JSTF suggestion to an unmodified version of the glyph string.

Example 3 at the end of this clause shows JstfGSUBModList and JstfGPOSModList tables with data for
shrinking and extending text line lengths.

JstfGSUBModList table

Type Name Description

uint16 LookupCount Number of lookups for this modification

uint16 GSUBLookupIndex[LookupCount] Array of LookupIndex identifiers in GSUB-in increasing numerical
order

JstfGPOSModList table

Type Name Description

uint16 LookupCount Number of lookups for this modification

uint16 GPOSLookupIndex[LookupCount] Array of LookupIndex identifiers in GPOS-in increasing numerical
order

ISO/IEC FDIS 14496-22:2006(E)

260 © ISO/IEC 2006 — All rights reserved

Justification Maximum Table

A Justification Maximum table (JstfMax) consists of an array of Offsets to justification lookups (Lookup) and a
count of the defined lookups (Lookup). JstfMax lookups typically are located after the JstfMax table in the font
definition.

JstfMax tables have the same format as lookup tables and subtables in the GPOS table, but the JstfMax
lookups reside in the JSTF table and contain justification data only. The lookup data might specify a single
adjustment value for positioning all glyphs in the script, or it might specify more elaborate adjustments, such
as different values for different glyphs or special values for specific pairs of glyphs.
NOTE All GPOS lookup types except contextual positioning lookups may be defined in a JstfMax table.

JstfMax lookup values are defined in GPOS ValueRecords and may be specified for any advance or
placement position, whether horizontal or vertical. These values define the maximum shrinkage or extension
allowed per glyph. To justify text, a text-processing client may choose to adjust a glyph's positioning by any
amount from zero (0) to the specified maximum.

Example 4 at the end of this clause shows a JstfMax table. It defines a justification lookup to change the size
of the word space glyph to extend line lengths.

JstfMax table

Type Name Description

uint16 LookupCount Number of lookup Indices for this modification

Offset Lookup[LookupCount] Array of Offsets to GPOS-type lookup tables-from beginning of JstfMax table-
in design order

5.3.5.3 JSTF Table Examples

The rest of this clause describes examples of all the JSTF table formats. All the examples reflect unique
parameters described below, but the samples provide a useful reference for building tables specific to other
situations.

The examples have three columns showing hex data, source, and comments.

Example 1: JSTF Header Table and JstfScriptRecord

Example 1 demonstrates how a script is defined in the JSTF Header with a JstfScriptRecord that identifies the
script and references its JstfScript table.

Example 1

Hex Data Source Comments

 JSTFHeader
TheJSTFHeader JSTFHeader table definition

00010000 0x00010000 Version

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 261

0001 1 JstfScriptCount
JstfScriptRecord[0]

74686169 "thai" JstfScriptTag

000C ThaiScript Offset to JstfScript table

Example 2: JstfScript Table, ExtenderGlyph Table, JstfLangSysRecord, and JstfLangSys Table

Example 2 shows a JstfScript table for the Arabic script and the tables it references. The DefJstfLangSys table
defines justification data to apply to the script in the absence of language-specific information. In the example,
the table lists two justification suggestions in priority order.

JstfScript also supplies language-specific justification data for the Farsi language. The JstfLangSysRecord
identifies the language and references its JstfLangSys table. The FarsiJstfLangSys lists one suggestion for
justifying Farsi text.

The ExtenderGlyph table in JstfScript lists the indices of all the extender glyphs used in the script.

Example 2

Hex Data Source Comments

 JstfScript
ArabicScript JstfScript table definition

000C ArabicExtenders ExtenderGlyph

0012 ArabicDefJstfLangSys Offset to DefJstfLangSys table

0001 1 JstfLangSysCount
JstfLangSysRecord[0]

50455220 "FAR " JstfLangSysTag

0018 FarsiJstfLangSys JstfLangSys

 ExtenderGlyph
ArabicExtenders ExtenderGlyph table definition

0002 2 GlyphCount

01D3 TatweelGlyphID ExtenderGlyph[0]

01D4 LongTatweelGlyphID ExtenderGlyph[1]

ISO/IEC FDIS 14496-22:2006(E)

262 © ISO/IEC 2006 — All rights reserved

 JstfLangSys
ArabicDefJstfLangSys JstfLangSys table definition

0002 2 JstfPriorityCnt

000A ArabicScriptJstfPriority1 Offset to JstfPriority[0] table

001E ArabicScriptJstfPriority2 Offset to JstfPriority[1] table

 JstfLangSys
FarsiJstfLangSys JstfLangSys table definition

0001 1 JstfPriorityCnt

002C FarsiLangJstfPriority1 Offset to JstfPriority[0] table

Example 3: JstfPriority Table, JstfGSUBModList Table, and JstfGPOSModList Table

Example 3 shows the JstfPriority and JstfModList table definitions for two justification suggestions defined in
priority order. The first suggestion uses ligature substitution to shrink the lengths of text lines, and it extends
line lengths by replacing ligatures with their individual glyph components. Other lookup actions are not
recommended at this priority level and are set to NULL. The associated JstfModList tables enable and disable
three substitution lookups.

The second suggestion enables glyph kerning to reduce line lenths and disables glyph kerning to extend line
lengths. Each action uses three lookups. This suggestion also includes a JstfMax table to extend line lengths,
called WordSpaceExpandMax, which is described in Example 4.

Example 3

Hex
Data

Source Comments

 JstfPriority
USEnglishFirstJstfPriority JstfPriority table definition

0028 EnableGSUBLookupsToShrink Offset to ShrinkageEnableGSUB JstfGSUBModList table

0000 NULL Offset to ShrinkageDisableGSUB JstfGSUBModList table

0000 NULL Offset to ShrinkageEnableGPOS JstfGPOSModList table

0000 NULL Offset to ShrinkageDisableGPOS JstfGPOSModList table

0000 NULL Offset to Shrinkage JstfMax table

0000 NULL Offset to ExtensionEnableGSUB, JstfGSUBModList table

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 263

0038 DisableGSUBLookupsToExtend Offset to ExtensionDisableGSUB JstfGSUBModList table

0000 NULL Offset to ExtensionEnableGPOS JstfGPOSModList table

0000 NULL Offset to ExtensionDisableGPOS JstfGPOSModList table

0000 NULL Offset to Extension JstfMax table

 JstfPriority
USEnglishSecondJstfPriority JstfPriority table definition

0000 NULL Offset to ShrinkageEnableGSUB JstfGSUBModList table

0000 NULL Offset to ShrinkageDisableGSUB JstfGSUBModList table

0000 NULL Offset to ShrinkageEnableGPOS JstfGPOSModList table

001C DisableGPOSLookupsToShrink Offset to ShrinkageDisableGPOS JstfGPOSModList table

0000 NULL Offset to Shrinkage JstfMax table

0000 NULL Offset to ExtensionEnableGSUB JstfGSUBModList table

0000 NULL Offset to ExtensionDisableGSUB JstfGSUBModList table

002C EnableGPOSLookupsToExtend Offset to ExtensionEnableGPOS JstfGPOSModList table

0000 NULL Offset to ExtensionDisableGPOS JstfGPOSModList table

0000 NULL Offset to Extension JstfMax table

 JstfGSUBModList
EnableGSUBLookupsToShrink

JstfGSUBModList table definition, enable three ligature substitution
lookups

0003 3 LookupCount

002E 46 LookupIndex[0]

0035 53 LookupIndex[1]

0063 99 LookupIndex[2]

 JstfGPOSModList JstfGPOSModList table definition, disable three tight kerning lookups

ISO/IEC FDIS 14496-22:2006(E)

264 © ISO/IEC 2006 — All rights reserved

DisableGPOSLookupsToShrink

0003 3 LookupCount

006C 108 LookupIndex[0]

006E 110 LookupIndex[1]

0070 112 LookupIndex[2]

 JstfGSUBModList
DisableGSUBLookupsToExtend

JstfGSUBModList table definition, disable three ligature substitution
lookups

0003 3 LookupCount

002E 46 LookupIndex[0]

0035 53 LookupIndex[1]

0063 99 LookupIndex[2]

 JstfGPOSModList
EnableGPOSLookupsToExtend

JstfGPOSModList table definition enable three tight kerning lookups

0003 3 LookupCount

006C 108 LookupIndex[0]

006E 110 LookupIndex[1]

0070 112 LookupIndex[2]

Example 4: JstfMax Table

The JstfMax table in Example 4 defines a lookup to expand the advance width of the word space glyph and
extend line lengths. The lookup definition is identical to the SinglePos lookup type in the GPOS table although
it is enabled only when justifying text. The ValueRecord in the WordSpaceExpand lookup subtable specifies
an XAdvance adjustment of 360 units, which is the maximum value the font developer recommends for
acceptable text rendering. The text-processing client may implement the lookup using any value between zero
and the maximum.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 265

Example 4

Hex
Data

Source Comments

 JstfMax
WordSpaceExpandMax JstfMax table definition

0001 1 LookupCount

0004 WordSpaceExpandLookup Offset to Jstf Lookup[0] table

 Lookup
WordSpaceExpandLookup Jstf Lookup table definition

0001 1 LookupType, SinglePos Lookup

0000 0x0000 LookupFlag

0001 1 SubTableCount

0008 WordSpaceExpandSubtable Offset to Subtable[0], SinglePos subtable

 SinglePosFormat1
WordSpaceExpandSubtable SinglePos subtable definition

0001 1 PosFormat

0008 WordSpaceCoverage Offset to Coverage table

0004 0x0004 ValueFormat, XAdvance only

0168 360 Value XAdvance value in Jstf, this is a max value, expand word space from
zero to this amount

 CoverageFormat1
WordSpaceCoverage Coverage table definition

0001 1 CoverageFormat

0001 1 GlyphCount

0022 WordSpaceGlyphID GlyphArray[0]

ISO/IEC FDIS 14496-22:2006(E)

266 © ISO/IEC 2006 — All rights reserved

5.4 Layout Tag Registry
OFF Layout tags are 4-byte character strings that identify the scripts, language systems, features and
baselines in a OFF Layout font. The registry establishes conventions for naming and using these tags.
Registered tags have a specific meaning and convey precise information to developers and text-processing
clients of OFF Layout. Font developers are encouraged to use registered tags to assure compatibility and
ease of use across fonts, applications, and operating systems. Additional tags can be added to the tag registry
when necessary.

5.4.1 Scripts Tags

Script tags correspond to the contiguous character code ranges in Unicode.

All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range. A
script tag can consist of four or fewer lowercase letters. If a script tag consists less than four lowercase letters,
the letters are followed by the requisite number of spaces (0x20), each consisting of a single byte.

Here is the complete list of script tags.

Script Script Tag

Arabic arab

Armenian armn

Balinese bali

Bengali beng

Bopomofo bopo

Braille brai

Buginese bugi

Buhid buhd

Byzantine Music byzm

Canadian Syllabics cans

Cherokee cher

CJK Ideographic hani

Coptic copt

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 267

Cypriot Syllabary cprt

Cyrillic cyrl

Default dflt

Deseret dsrt

Devanagari deva

Ethiopic ethi

Georgian geor

Glagolitic glag

Gothic goth

Greek grek

Gujarati gujr

Gurmukhi guru

Hangul Jamo jamo

Hangul hang

Hanunoo hano

Hebrew hebr

Hiragana and Katakana kana

Javanese java

Kannada knda

Kharosthi khar

Khmer khmr

Lao lao

Latin latn

ISO/IEC FDIS 14496-22:2006(E)

268 © ISO/IEC 2006 — All rights reserved

Limbu limb

Linear B linb

Malayalam mlym

Mathematical Alphanumeric
Symbols math

Mongolian mong

Musical Symbols musc

Myanmar mymr

N'ko nko

Ogham ogam

Old Italic ital

Old Persian Cuneiform xpeo

Oriya orya

Osmanya osma

Phags-pa phag

Phoenician phnx

Runic runr

Shavian shaw

Sinhala sinh

Sumero-Akkadian Cuneiform xsux

Syloti Nagri sylo

Syriac syrc

Tagalog tglg

Tagbanwa tagb

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 269

Tai Le tale

Tai Lu talu

Tamil taml

Telugu telu

Thaana thaa

Thai thai

Tibetan tibt

Tifinagh tfng

Ugaritic Cuneiform ugar

Yi yi

When the ScriptList table is searched for a script, and no entry is found, and there is an entry for the DFLT
script, then this entry must be used. Furthermore, the Script table for the 'DFLT' script must have a non-NULL
DefaultLangSys and a LangSysCount equal to 0; in other words, there is only a default language for the
default script.

5.4.2 Language Tags -

Language system tags identify the language systems supported in a OFF Layout font. Windows platform uses
the standard language system tag names.

All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range. If
a language system tag consists of three or less lowercase letters, the letters are followed by the requisite
number of spaces (0x20), each consisting of a single byte.

Language System
Tag

Language System

Abaza ABA

Abkhazian ABK

Adyghe ADY

Afrikaans AFK

ISO/IEC FDIS 14496-22:2006(E)

270 © ISO/IEC 2006 — All rights reserved

Afar AFR

Agaw AGW

Altai ALT

Amharic AMH

Arabic ARA

Aari ARI

Arakanese ARK

Assamese ASM

Athapaskan ATH

Avar AVR

Awadhi AWA

Aymara AYM

Azeri AZE

Badaga BAD

Baghelkhandi BAG

Balkar BAL

Baule BAU

Berber BBR

Bench BCH

Bible Cree BCR

Belarussian BEL

Bemba BEM

Bengali BEN

Bulgarian BGR

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 271

Bhili BHI

Bhojpuri BHO

Bikol BIK

Bilen BIL

Blackfoot BKF

Balochi BLI

Balante BLN

Balti BLT

Bambara BMB

Bamileke BML

Breton BRE

Brahui BRH

Braj Bhasha BRI

Burmese BRM

Bashkir BSH

Beti BTI

Catalan CAT

Cebuano CEB

Chechen CHE

Chaha Gurage CHG

Chattisgarhi CHH

Chichewa CHI

Chukchi CHK

Chipewyan CHP

ISO/IEC FDIS 14496-22:2006(E)

272 © ISO/IEC 2006 — All rights reserved

Cherokee CHR

Chuvash CHU

Comorian CMR

Coptic COP

Cree CRE

Carrier CRR

Crimean Tatar CRT

Church Slavonic CSL

Czech CSY

Danish DAN

Dargwa DAR

Woods Cree DCR

German (Standard) DEU

Dogri DGR

Dhivehi DHV

Djerma DJR

Dangme DNG

Dinka DNK

Dungan DUN

Dzongkha DZN

Ebira EBI

Eastern Cree ECR

Edo EDO

Efik EFI

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 273

Greek ELL

English ENG

Erzya ERZ

Spanish ESP

Estonian ETI

Basque EUQ

Evenki EVK

Even EVN

Ewe EWE

French Antillean FAN

Farsi FAR

Finnish FIN

Fijian FJI

Flemish FLE

Forest Nenets FNE

Fon FON

Faroese FOS

French (Standard) FRA

Frisian FRI

Friulian FRL

Futa FTA

Fulani FUL

Ga GAD

Gaelic GAE

ISO/IEC FDIS 14496-22:2006(E)

274 © ISO/IEC 2006 — All rights reserved

Gagauz GAG

Galician GAL

Garshuni GAR

Garhwali GAW

Ge'ez GEZ

Gilyak GIL

Gumuz GMZ

Gondi GON

Greenlandic GRN

Garo GRO

Guarani GUA

Gujarati GUJ

Haitian HAI

Halam HAL

Harauti HAR

Hausa HAU

Hawaiin HAW

Hammer-Banna HBN

Hiligaynon HIL

Hindi HIN

High Mari HMA

Hindko HND

Ho HO

Harari HRI

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 275

Croatian HRV

Hungarian HUN

Armenian HYE

Igbo IBO

Ijo IJO

Ilokano ILO

Indonesian IND

Ingush ING

Inuktitut INU

Irish IRI

Irish Traditional IRT

Icelandic ISL

Inari Sami ISM

Italian ITA

Hebrew IWR

Javanese JAV

Yiddish JII

Japanese JAN

Judezmo JUD

Jula JUL

Kabardian KAB

Kachchi KAC

Kalenjin KAL

Kannada KAN

ISO/IEC FDIS 14496-22:2006(E)

276 © ISO/IEC 2006 — All rights reserved

Karachay KAR

Georgian KAT

Kazakh KAZ

Kebena KEB

Khutsuri Georgian KGE

Khakass KHA

Khanty-Kazim KHK

Khmer KHM

Khanty-Shurishkar KHS

Khanty-Vakhi KHV

Khowar KHW

Kikuyu KIK

Kirghiz KIR

Kisii KIS

Kokni KKN

Kalmyk KLM

Kamba KMB

Kumaoni KMN

Komo KMO

Komso KMS

Kanuri KNR

Kodagu KOD

Konkani KOK

Kikongo KON

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 277

Komi-Permyak KOP

Korean KOR

Komi-Zyrian KOZ

Kpelle KPL

Krio KRI

Karakalpak KRK

Karelian KRL

Karaim KRM

Karen KRN

Koorete KRT

Kashmiri KSH

Khasi KSI

Kildin Sami KSM

Kui KUI

Kulvi KUL

Kumyk KUM

Kurdish KUR

Kurukh KUU

Kuy KUY

Koryak KYK

Ladin LAD

Lahuli LAH

Lak LAK

Lambani LAM

ISO/IEC FDIS 14496-22:2006(E)

278 © ISO/IEC 2006 — All rights reserved

Lao LAO

Latin LAT

Laz LAZ

L-Cree LCR

Ladakhi LDK

Lezgi LEZ

Lingala LIN

Low Mari LMA

Limbu LMB

Lomwe LMW

Lower Sorbian LSB

Lule Sami LSM

Lithuanian LTH

Luba LUB

Luganda LUG

Luhya LUH

Luo LUO

Latvian LVI

Majang MAJ

Makua MAK

Malayalam
Traditional

MAL

Mansi MAN

Marathi MAR

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 279

Marwari MAW

Mbundu MBN

Manchu MCH

Moose Cree MCR

Mende MDE

Me'en MEN

Mizo MIZ

Macedonian MKD

Male MLE

Malagasy MLG

Malinke MLN

Malayalam
Reformed

MLR

Malay MLY

Mandinka MND

Mongolian MNG

Manipuri MNI

Maninka MNK

Manx Gaelic MNX

Moksha MOK

Moldavian MOL

Mon MON

Moroccan MOR

Maori MRI

ISO/IEC FDIS 14496-22:2006(E)

280 © ISO/IEC 2006 — All rights reserved

Maithili MTH

Maltese MTS

Mundari MUN

Naga-Assamese NAG

Nanai NAN

Naskapi NAS

N-Cree NCR

Ndebele NDB

Ndonga NDG

Nepali NEP

Newari NEW

Norway House Cree NHC

Nisi NIS

Niuean NIU

Nkole NKL

Dutch NLD

Nogai NOG

Norwegian NOR

Northern Sami NSM

Northern Tai NTA

Esperanto NTO

Nynorsk NYN

Oji-Cree OCR

Ojibway OJB

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 281

Oriya ORI

Oromo ORO

Ossetian OSS

Palestinian Aramaic PAA

Pali PAL

Punjabi PAN

Palpa PAP

Pashto PAS

Polytonic Greek PGR

Pilipino PIL

Palaung PLG

Polish PLK

Provencal PRO

Portuguese PTG

Chin QIN

Rajasthani RAJ

R-Cree RCR

Russian Buriat RBU

Riang RIA

Rhaeto-Romanic RMS

Romanian ROM

Romany ROY

Rusyn RSY

Ruanda RUA

ISO/IEC FDIS 14496-22:2006(E)

282 © ISO/IEC 2006 — All rights reserved

Russian RUS

Sadri SAD

Sanskrit SAN

Santali SAT

Sayisi SAY

Sekota SEK

Selkup SEL

Sango SGO

Shan SHN

Sibe SIB

Sidamo SID

Silte Gurage SIG

Skolt Sami SKS

Slovak SKY

Slavey SLA

Slovenian SLV

Somali SML

Samoan SMO

Sena SNA

Sindhi SND

Sinhalese SNH

Soninke SNK

Sodo Gurage SOG

Sotho SOT

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 283

Albanian SQI

Serbian SRB

Saraiki SRK

Serer SRR

South Slavey SSL

Southern Sami SSM

Suri SUR

Svan SVA

Swedish SVE

Swadaya Aramaic SWA

Swahili SWK

Swazi SWZ

Sutu SXT

Syriac SYR

Tabasaran TAB

Tajiki TAJ

Tamil TAM

Tatar TAT

TH-Cree TCR

Telugu TEL

Tongan TGN

Tigre TGR

Tigrinya TGY

Thai THA

ISO/IEC FDIS 14496-22:2006(E)

284 © ISO/IEC 2006 — All rights reserved

Tahitian THT

Tibetan TIB

Turkmen TKM

Temne TMN

Tswana TNA

Tundra Nenets TNE

Tonga TNG

Todo TOD

Turkish TRK

Tsonga TSG

Turoyo Aramaic TUA

Tulu TUL

Tuvin TUV

Twi TWI

Udmurt UDM

Ukrainian UKR

Urdu URD

Upper Sorbian USB

Uyghur UYG

Uzbek UZB

Venda VEN

Vietnamese VIT

Wa WA

Wagdi WAG

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 285

West-Cree WCR

Welsh WEL

Wolof WLF

Xhosa XHS

Yakut YAK

Yoruba YBA

Y-Cree YCR

Yi Classic YIC

Yi Modern YIM

Chinese Phonetic ZHP

Chinese Simplified ZHS

Chinese Traditional ZHT

Zande ZND

Zulu ZUL

5.4.3 Feature Tags

Features provide information about how to use the glyphs in a font to render a script or language. For example,
an Arabic font might have a feature for substituting initial glyph forms, and a Kanji font might have a feature for
positioning glyphs vertically. All OFF Layout features define data for glyph substitution, glyph positioning,
or both.

Each OFF Layout feature has a feature tag that identifies its typographic function and effects. By examining a
feature's tag, a text-processing client can determine what a feature does and decide whether to implement it.
All tags are 4-byte character strings composed of a limited set of ASCII characters in the 0x20-0x7E range.
Windows platform-registered feature tags use four lowercase letters. For instance, the "mark" feature
manages the placement of diacritical marks, and the "swsh" feature renders swash glyphs.

A feature definition may not provide all the information required to properly implement glyph substitution or
positioning actions. In many cases, a text-processing client may need to supply additional data. For example,
the function of the "init" feature is to provide initial glyph forms. Nothing in the feature's lookup tables indicates
when or where to apply this feature during text processing. To correctly use the "init" feature in Arabic text
where initial glyph forms appear at the beginning of words, text-processing clients must be able to identify the
first glyph position in each word before making the glyph substitution. In all cases, the text-processing client is
responsible for applying, combining, and arbitrating among features and rendering the result.

The tag space defined by tags consisting of four uppercase letters (A-Z) with no punctuation, spaces, or
numbers, is reserved as a vendor space. Font vendors may use such tags to identify private features. For

ISO/IEC FDIS 14496-22:2006(E)

286 © ISO/IEC 2006 — All rights reserved

example, the feature tag "PKRN" might designate a private feature that may be used to kern punctuation
marks.
NOTE There is no guarantee the compatibility or usability of private features, and it cannot be ensured that two font
vendors will not choose the same tag for a private feature.

This Tag Registry describes all the OFF Layout features. Lookup information is provided for reference
purposes only; the set of lookups used to implement a feature will vary across system platforms, applications,
fonts, and font developers.

5.4.3.1 Feature Tag List

Registered features

The features listed below are sorted in alphabetical order by tag name.

Feature Tag Friendly Name

'aalt' Access All Alternates

'abvf' Above-base Forms

'abvm' Above-base Mark Positioning

'abvs' Above-base Substitutions

'afrc' Alternative Fractions

'akhn' Akhands

'blwf' Below-base Forms

'blwm' Below-base Mark Positioning

'blws' Below-base Substitutions

'calt' Contextual Alternates

'case' Case-Sensitive Forms

'ccmp' Glyph Composition / Decomposition

'clig' Contextual Ligatures

'cpsp' Capital Spacing

'cswh' Contextual Swash

'curs' Cursive Positioning

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 287

'c2sc' Small Capitals From Capitals

'c2pc' Petite Capitals From Capitals

'dist' Distances

'dlig' Discretionary Ligatures

'dnom' Denominators

'expt' Expert Forms

'falt' Final Glyph on Line Alternates

'fin2' Terminal Forms #2

'fin3' Terminal Forms #3

'fina' Terminal Forms

'frac' Fractions

'fwid' Full Widths

'half' Half Forms

'haln' Halant Forms

'halt' Alternate Half Widths

'hist' Historical Forms

'hkna' Horizontal Kana Alternates

'hlig' Historical Ligatures

'hngl' Hangul

'hwid' Half Widths

'init' Initial Forms

'isol' Isolated Forms

'ital' Italics

'jalt' Justification Alternates

ISO/IEC FDIS 14496-22:2006(E)

288 © ISO/IEC 2006 — All rights reserved

'jp78' JIS78 Forms

'jp83' JIS83 Forms

'jp90' JIS90 Forms

'kern' Kerning

'lfbd' Left Bounds

'liga' Standard Ligatures

'ljmo' Leading Jamo Forms

'lnum' Lining Figures

'locl' Localized Forms

'mark' Mark Positioning

'med2' Medial Forms #2

'medi' Medial Forms

'mgrk' Mathematical Greek

'mkmk' Mark to Mark Positioning

'mset' Mark Positioning via Substitution

'nalt' Alternate Annotation Forms

'nlck' NLC Kanji Forms

'nukt' Nukta Forms

'numr' Numerators

'onum' Oldstyle Figures

'opbd' Optical Bounds

'ordn' Ordinals

'ornm' Ornaments

'palt' Proportional Alternate Widths

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 289

'pcap' Petite Capitals

'pnum' Proportional Figures

'pref' Pre-Base Forms

'pres' Pre-base Substitutions

'pstf' Post-base Forms

'psts' Post-base Substitutions

'pwid' Proportional Widths

'qwid' Quarter Widths

'rand' Randomize

'rlig' Required Ligatures

'rphf' Reph Forms

'rtbd' Right Bounds

'rtla' Right-to-left alternates

'ruby' Ruby Notation Forms

'salt' Stylistic Alternates

'sinf' Scientific Inferiors

'size' Optical size

'smcp' Small Capitals

'smpl' Simplified Forms

'ss01' Stylistic Set 1

'ss02' Stylistic Set 2

'ss03' Stylistic Set 3

'ss04' Stylistic Set 4

'ss05' Stylistic Set 5

ISO/IEC FDIS 14496-22:2006(E)

290 © ISO/IEC 2006 — All rights reserved

'ss06' Stylistic Set 6

'ss07' Stylistic Set 7

'ss08' Stylistic Set 8

'ss09' Stylistic Set 9

'ss10' Stylistic Set 10

'ss11' Stylistic Set 11

'ss12' Stylistic Set 12

'ss13' Stylistic Set 13

'ss14' Stylistic Set 14

'ss15' Stylistic Set 15

'ss16' Stylistic Set 16

'ss17' Stylistic Set 17

'ss18' Stylistic Set 18

'ss19' Stylistic Set 19

'ss20' Stylistic Set 20

'subs' Subscript

'sups' Superscript

'swsh' Swash

'titl' Titling

'tjmo' Trailing Jamo Forms

'tnam' Traditional Name Forms

'tnum' Tabular Figures

'trad' Traditional Forms

'twid' Third Widths

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 291

'unic' Unicase

'valt' Alternate Vertical Metrics

'vatu' Vattu Variants

'vert' Vertical Writing

'vhal' Alternate Vertical Half Metrics

'vjmo' Vowel Jamo Forms

'vkna' Vertical Kana Alternates

'vkrn' Vertical Kerning

'vpal' Proportional Alternate Vertical Metrics

'vrt2' Vertical Alternates and Rotation

'zero' Slashed Zero

5.4.3.1.1 Feature Descriptions and Implementations

Tag: 'aalt'

Friendly name: Access All Alternates

Function: This feature makes all variations of a selected character accessible. This serves several purposes:
An application may not support the feature by which the desired glyph would normally be accessed; the user
may need a glyph outside the context supported by the normal substitution, or the user may not know what
feature produces the desired glyph. Since many-to-one substitutions are not covered, ligatures would not
appear in this table unless they were variant forms of another ligature.

Example: A user inputs the P in Poetica, and is presented with a choice of the four standard capital forms, the
eight swash capital forms, the initial capital form and the small capital form.

Recommended implementation: The aalt table groups glyphs into semantic units. These units include the
glyph which represents the default form for the underlying Unicode value stored by the application. While
many of these substitutions are one-to-one (GSUB lookup type 1), others require a selection from a set
(GSUB lookup type 3). The manufacturer may choose to build two tables (one for each lookup type) or only
one which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates present in
more than one face should be ordered consistently across a family, so that those alternates can work correctly
when switching between family members. This feature should be ordered first in the font, to take precedence
over other features.

Application interface: The application determines the GID for the default form of a given character (Unicode
value with no features applied). It then checks to see whether the GID is found in the aalt coverage table. If so,
the application passes this value to the feature table and gets back the GIDs in the associated group.

UI suggestion: While most one-from-many substitution features can be applied globally with reasonable
results, aalt is not designed to support this use. The application should indicate to the user which glyphs in the
user's document have alternative forms (i.e which are in the coverage table for aalt). When the user selects

ISO/IEC FDIS 14496-22:2006(E)

292 © ISO/IEC 2006 — All rights reserved

one of those glyphs and applies the aalt feature, an application could display the forms sequentially in context,
or present a palette showing all the forms at once, or give the user a choice between these approaches. The
application may assume that the first glyph in a set is the preferred form, so the font developer should order
them accordingly. When only one alternate exists, this feature could toggle directly between the alternate and
default forms.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other features.

Tag: 'abvf'

Friendly name: Above-base Forms

Function: Substitutes the above-base form of a vowel.

Example: In complex scripts like Khmer, the vowel OE must be split into a pre-base form and an above-base
form. The above-base form of OE would be substituted to form the correct piece of the letter that is displayed
above the base consonant.

Recommended implementation: This feature substitutes the GID for OE with the above part of the glyph
(GSUB lookup type 1).

Application interface: In a sequence where a split vowel with an above form is used, the application must
insert the pre-base glyph into the correct location and then apply the above-base form feature. The application
gets back the GID for the correct form for the piece that is placed above the base glyph. The application may
also choose to position this glyph if required, after this feature is called.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Khmer script.

Feature interaction: This feature overrides the results of all other features.

Tag: 'abvm'

Friendly name: Above-base Mark Positioning

Function: Positions marks above base glyphs.

Example: In complex scripts like Devanagari (Indic), the Anuswar needs to be positioned above the base
glyph. This base glyph can be a base consonant or conjunct. The base glyph and the presence/absence of
other marks above the base glyph decides the location of the Anuswar, so that they do not overlap each other.

Recommended implementation: The abvm table provides positioning information (x,y) to enable mark
positioning (GPOS lookup type 4, 5).

Application interface: The application must define the GIDs of the base glyphs above which marks need to be
positioned, and the marks themselves. If these are located in the coverage table, the application passes the
sequence to the abvm table and gets the positioning values (x,y) or positioning adjustments for the mark in
return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: Can be used to position default marks; or those that have been selected from a number of
alternates based on contextual requirement using a feature like abvs.

Tag: 'abvs'

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 293

Friendly name: Above-base Substitutions

Function: Substitutes a ligature for a base glyph and mark that's above it.

Example: In complex scripts like Kannada (Indic), the vowel sign for the vowel I which a mark, is positioned
above base consonants. This mark combines with the consonant Ga to form a ligature.

Recommended implementation: Lookups for this feature map each sequence of consonant and vowel sign to
the corresponding ligature in the font (GSUB lookup type 4).

Application interface: The application must define the GIDs of the base glyphs and the mark that combines
with it to form a ligature. The application passes the sequence to the abvs table. If these are located in the
coverage table, it gets the GID for the ligature in return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: None.

Tag: 'afrc'

Friendly name: Alternative Fractions

Function: Replaces figures separated by a slash with an alternative form.

Example: The user enters 3/4 in a recipe and get the threequarters nut fraction.

Recommended implementation: The afrc table maps sets of figures separated by slash (U+002F) or fraction
(U+2044) characters to corresponding fraction glyphs in the font (GSUB lookup type 4).

Application interface: The application must define the full sequence of GIDs to be replaced. When the full
sequence is found in the frac coverage table, the application passes the sequence to the afrc table and gets a
new GID in return.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of all other features.

Tag: 'akhn'

Friendly name: Akhand

Function: Preferentially substitutes a sequence of characters with a ligature. This substitution is done
irrespective of any characters that may precede or follow the sequence.

Example: In complex scripts like Devanagari (Indic), the sequence Ka, Halant, Ssa should always produce the
ligature Kssa, irrespective of characters that precede/follow the above given sequence. The Kssa is identified
in Devanagari as an Akhand character (meaning unbreakable).

Recommended implementation: This feature maps the sequences for generating Akhands defined in the given
script, to the ligature they form (GSUB lookup type 4).

Application interface: The application passes the full sequence of GIDs. If these are located in the coverage
table of the Akhand table, the application gets back the GID for the akhand ligature in return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in most Indic scripts.

ISO/IEC FDIS 14496-22:2006(E)

294 © ISO/IEC 2006 — All rights reserved

Feature interaction: This feature overrides the results of all other features.

Tag: 'blwf'

Friendly name: Below-base Forms

Function: Substitutes the below-base form of a consonant in conjuncts.

Example: In complex scripts like Oriya (Indic), the consonant Va has a below-base form that is used to
generate conjuncts. Given a sequence Gha, Virama (Halant), Va; the below-base form of Va would be
substituted to form the conjunct GhVa.

Recommended implementation: This feature substitutes the GID sequence of consonant followed by (virama)
halant; by the GID of the below base form of the consonant (GSUB lookup type 4).

Application interface: In a conjunct formation sequence, if a consonant is identified as having a below base
form, the application gets back the GID for this. The application may also choose to position this glyph if
required, after this feature is called.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in a number of Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'blwm'

Friendly name: Below-base Mark Positioning

Function: Positions marks below base glyphs.

Example: In complex scripts like Gujarati (Indic), the vowel sign U needs to be positioned below base
consonant/conjuncts that form the base glyph. This position can vary depending on the base glyph, as well as
the presence/absence of other marks below the base glyph.

Recommended implementation: The blwm table provides positioning information (x,y) to enable mark
positioning (GPOS lookup type 4, 5).

Application interface: The application must define the GIDs of the base glyphs below which marks need to be
positioned, and the marks themselves. If these are located in the coverage table, the application passes the
sequence to the blwm table and gets the positioning values (x,y) or positioning adjustments for the mark in
return.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: Can be used to position default marks; or those that have been selected from a number of
alternates based on contextual requirement using a feature like blws.

Tag: "blws"

Friendly name: Below-base Substitutions

Function: Produces ligatures that comprise of base glyph and below-base forms.

Example: In the Malayalam script (Indic), the conjunct Kla, requires a ligature which is formed using the base
glyph Ka and the below-base form of consonant La. This feature can also be used to substitute ligatures
formed using base glyphs and below base matras in Indic scripts.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 295

Recommended implementation: The blws table maps the identified conjunct forming sequences; or
consonant vowel sign sequences; to their ligatures (GSUB lookup type 4).

Application interface: For GIDs found in the blws coverage table, the application passes the sequence of
GIDs to the table, and gets back the GID for the ligature.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'calt'

Friendly name: Contextual Alternates

Function: In specified situations, replaces default glyphs with alternate forms which provide better joining
behavior. Used in script typefaces which are designed to have some or all of their glyphs join.

Example: In Caflisch Script, o is replaced by o.alt2 when followed by an ascending letterform.

Recommended implementation: The calt table specifies the context in which each substitution occurs, and
maps one or more default glyphs to replacement glyphs (GSUB lookup type 6).

Application interface: The application passes sequences of GIDs to the feature table, and gets back new GIDs.
Full sequences must be passed.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Not applicable to ideographic scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'case'

Friendly name: Case-Sensitive Forms

Function: Shifts various punctuation marks up to a position that works better with all-capital sequences or sets
of lining figures; also changes oldstyle figures to lining figures. By default, glyphs in a text face are designed to
work with lowercase characters. Some characters should be shifted vertically to fit the higher visual center of
all-capital or lining text. Also, lining figures are the same height (or close to it) as capitals, and fit much better
with all-capital text.

Example: The user selects a block of text and applies this feature. The dashes, bracketing characters,
guillemet quotes and the like shift up to match the capitals, and oldstyle figures change to lining figures.

Recommended implementation: The font may implement this change by substituting different glyphs (GSUB
lookup type 1) or by repositioning the original glyphs (GPOS lookup type 1).

Application interface: The application queries whether specific GIDs are found in the coverage table for the
case feature. If so, it passes these IDs to the table and gets back either new GIDs or positional adjustments
(XPlacement and YPlacement).

UI suggestion: It would be good to apply this feature (or turn it off) by default when the user changes case on
a sequence of more than one character. Applications could also detect words consisting only of capitals, and
apply this feature based on user preference settings.

ISO/IEC FDIS 14496-22:2006(E)

296 © ISO/IEC 2006 — All rights reserved

Script/language sensitivity: Applies only to European scripts; particularly prominent in Spanish-language
setting.

Feature interaction: This feature overrides the results of other features affecting the figures (e.g. onum and
tnum).

Tag: "ccmp"

Friendly name: Glyph Composition/Decomposition

Function: To minimize the number of glyph alternates, it is sometimes desired to decompose a character into
two glyphs. Additionally, it may be preferable to compose two characters into a single glyph for better glyph
processing. This feature permits such composition/decompostion. The feature should be processed as the
first feature processed, and should be processed only when it is called.

Example: In Syriac, the character 0x0732 is a combining mark that has a dot above AND a dot below the base
character. To avoid multiple glyph variants to fit all base glyphs, the character is decomposed into two
glyphs...a dot above and a dot below. These two glyphs can then be correctly placed using GPOS. In Arabic it
might be preferred to combine the shadda with fatha (0x0651, 0x064E) into a ligature before processing
shapes. This allows the font vendor to do special handling of the mark combination when doing further
processing without requiring larger contextual rules.

Recommended implementation: The ccmp table maps the character sequence to its corresponding ligature
(GSUB lookup type 4) or string of glyphs (GSUB lookup type 2). When using GSUB lookup type 4, sequences
that are made up of larger number of glyphs must be placed before those that require fewer glyphs.

Application interface: For GIDs found in the ccmp coverage table, the application passes the sequence of
GIDs to the table, and gets back the GID for the ligature, or GIDs for the multiple substitution.

UI suggestion: This feature should be on by default.

Script/language sensitivity: None.

Feature interaction: This feature needs to be implemented prior to any other feature.

Tag: 'clig'

Friendly name: Contextual Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes.
Unlike other ligature features, clig specifies the context in which the ligature is recommended. This capability
is important in some script designs and for swash ligatures.

Example: The glyph for ft replaces the sequence f t in Bickham Script, except when preceded by an ascending
letter.

Recommended implementation: The clig table maps sequences of glyphs to corresponding ligatures in a
chained context (GSUB lookup type 8). Ligatures with more components must be stored ahead of those with
fewer components in order to be found. The set of contextual ligatures will vary by design and script.

Application interface: For sets of GIDs found in the clig coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed.
NOTE This may include a change of character code. Besides the original character code, the application should store
the code for the new character.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Applies to virtually all scripts.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 297

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also dlig.

Tag: 'cpsp'

Friendly name: Capital Spacing

Function: Globally adjusts inter-glyph spacing for all-capital text. Most typefaces contain capitals and
lowercase characters, and the capitals are positioned to work with the lowercase. When capitals are used for
words, they need more space between them for legibility and esthetics. This feature would not apply to
monospaced designs. Of course the user may want to override this behavior in order to do more pronounced
letterspacing for esthetic reasons.

Example: The user sets a title in all caps, and the Capital Spacing feature opens the spacing.

Recommended implementation: The cpsp table stores alternate advance widths for the capital letters covered,
generally increasing them by a uniform percentage (GPOS lookup type 1).

Application interface: For GIDs found in the cpsp coverage table, the application passes a sequence of GIDs
to the cpsp table and gets back a set of XPlacement and XAdvance adjustments. The application may rely on
the user to apply this feature (e.g., by selecting text for a change to all-caps) or apply its own heuristics for
recognizing words consisting of capitals.

UI suggestion: This feature should be on by default. Applications may want to allow the user to respecify the
percentage to fit individual tastes and functions.

Script/language sensitivity: Should not be used in connecting scripts (e.g. most Arabic).

Feature interaction: May be used in addition to any other feature.
NOTE This feature is additive with other GPOS features like kern.

Tag: 'cswh'

Friendly name: Contextual Swash

Function: This feature replaces default character glyphs with corresponding swash glyphs in a specified
context. There may be more than one swash alternate for a given character.

Example: The user sets the word "HOLIDAY" in Poetica with this feature active, and is presented with a
choice of three alternate forms appropriate for an initial H and one alternate appropriate for a medial L.

Recommended implementation: The cswh table maps GIDs for default forms to those for one or more
corresponding swash forms in a chained context, which may require a selection from a set (GSUB lookup type
8). If several styles of swash are present across the font, the set of forms for each character should be
ordered consistently.

Application interface: For GIDs found in the cswh coverage table, the application passes the GIDs to the swsh
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Does not apply to ideographic scripts.

ISO/IEC FDIS 14496-22:2006(E)

298 © ISO/IEC 2006 — All rights reserved

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also swsh and init.

Tag: "curs"

Friendly name: Cursive Positioning

Function: In cursive scripts like Arabic, this feature cursively positions adjacent glyphs.

Example: In Arabic, the Meem followed by a Reh are cursively positioned by overlapping the exit point of the
Meem on the entry point of the Reh.

Recommended implementation: The curs table provides entry and exit points (x,y) for glyphs to be cursively
positioned (GPOS lookup type 3).

Application interface: For GIDs located in the coverage table, the application gets back positioning point
locations for the preceding and following glyphs.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: None.

Tag:'c2pc'

Friendly name: Petite Capitals From Capitals

Function: This feature turns capital characters into petite capitals. It is generally used for words which would
otherwise be set in all caps, such as acronyms, but which are desired in petite-cap form to avoid disrupting the
flow of text. See the pcap feature description for notes on the relationship of caps, smallcaps and petite caps.

Example: The user types UNICEF or NASA, applies c2pc and gets petite cap text.

Recommended implementation: The c2pc table maps capital glyphs to the corresponding petite cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the c2pc coverage table, the application passes GIDs to the c2pc
table, and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see pcap.

Tag: 'c2sc'

Friendly name: Small Capitals From Capitals

Function: This feature turns capital characters into small capitals. It is generally used for words which would
otherwise be set in all caps, such as acronyms, but which are desired in small-cap form to avoid disrupting the
flow of text.

Example: The user types UNICEF or SCUBA, applies c2sc and gets small cap text.

Recommended implementation: The c2sc table maps capital glyphs to the corresponding small-cap forms
(GSUB lookup type 1).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 299

Application interface: For GIDs found in the c2sc coverage table, the application passes GIDs to the c2sc
table, and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to European scripts (Cyrillic, Greek & Latin), which have capital forms.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see smcp.

Tag: "dist"

Friendly name: Distances

Function: Provides a means to control distance between glyphs.

Example: In the Devanagari (Indic) script, the distance between the vowel sign U and a consonant can be
adjusted using this.

Recommended implementation: The dist table provides distances by which a glyph needs to move towards or
away from another glyph (GPOS lookup type 2).

Application interface: For GIDs found in the dist coverage table, the application passes their GID to the table
and gets back the distance that needs to be maintained between them.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: None.

Tag: 'dlig'

Friendly name: Discretionary Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers those ligatures which may be used for special effect, at the user's preference.

Example: The glyph for ct replaces the sequence of glyphs c t, or U+322E (Kanji ligature for "Friday") replaces
the sequence U+91D1 U+66DC U+65E5.

Recommended implementation: The dlig table maps sequences of glyphs to corresponding ligatures (GSUB
lookup type 4). Ligatures with more components must be stored ahead of those with fewer components in
order to be found. The set of discretionary ligatures will vary by design and script.

Application interface: For sets of GIDs found in the dlig coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed. This may include a
change of character code. Besides the original character code, the application should store the code for the
new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies to virtually all scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also clig.

Tag: 'dnom'

Friendly name: Denominators

ISO/IEC FDIS 14496-22:2006(E)

300 © ISO/IEC 2006 — All rights reserved

Function: Replaces selected figures which follow a slash with denominator figures.

Example: In the string 11/17 selected by the user, the application turns the 17 into denominators when the
user applies the fraction feature (frac).

Recommended implementation: The dnom table maps sets of figures and related characters to corresponding
numerator glyphs in the font (GSUB lookup type 1).

Application interface: For GIDs found in the dnom coverage table, the application passes a GID to the table
and gets back a new GID.

UI suggestion: This feature should normally be called by an application when the user applies the frac feature.

Script/language sensitivity: None.

Feature interaction: This feature supports frac. It may be used in combination with other substitution (GSUB)
features, whose results it may override.

Tag: 'expt'

Friendly name: Expert Forms

Function: Like the JIS78 Forms described above, this feature replaces standard forms in Japanese fonts with
corresponding forms preferred by typographers. Although most of the JIS78 substitutions are included, the
expert substitution goes on to handle many more characters.

Example: The user would invoke this feature to replace kanji character U+5516 with U+555E.

Recommended implementation: The expt table maps many default (JIS90) GIDs to corresponding alternates
(GSUB lookup type 1).

Application interface: For GIDs found in the expt coverage table, the application passes the GIDs to the table
and gets back one new GID for each.
NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

UI suggestion: Applications may choose to have this feature active or inactive by default, depending on their
target markets.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: "falt"

Friendly name: Final Glyph on Line Alternates

Function: Replaces line final glyphs with alternate forms specifically designed for this purpose (they would
have less or more advance width as need may be), to help justification of text.

Example: In the Arabic script, providing alternate forms for line final glyphs would result in better justification.
eg. replacing a long tailed Yeh-with-tail with one that has a slightly longer/shorter tail.

Recommended implementation: The falt table maps line final glyphs (in isolated or final forms) to their
corresponding alternate forms (GSUB lookup type 3).

Application interface: For GIDs found in the falt coverage table, the application passes a GID to the table and
gets back a new GID.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 301

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: Would need to be applied last, only after all other features have been applied to the run.

Tag: "fin2"

Friendly name: Terminal Form #2

Function: Replaces the Alaph glyph at the end of Syriac words with its appropriate form, when the preceding
base character cannot be joined to, and that preceding base character is not a Dalath, Rish, or dotless Dalath-
Rish.

Example: When an Alaph is preceded by a He, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The fin2 table maps default alphabetic forms to corresponding final forms
(GSUB lookup type 5).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the fin2 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

Tag: "fin3"

Friendly name: Terminal Form #3

Function: Replaces Alaph glyphs at the end of Syriac words when the preceding base character is a Dalath,
Rish, or dotless Dalath-Rish.

Example: When an Alaph is preceded by a Dalath, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The fin3 table maps default alphabetic forms to corresponding final forms
(GSUB lookup type 5).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the fin3 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

Tag: 'fina'

Friendly name: Terminal Forms

Function: Replaces glyphs at the ends of words with alternate forms designed for this use. This is common in
Latin connecting scripts, and required in various non-Latins like Arabic.

ISO/IEC FDIS 14496-22:2006(E)

302 © ISO/IEC 2006 — All rights reserved

Example: In the typeface Poetica, the default e in the word 'type' is replaced with the e.end form.

Recommended implementation: The fina table maps default alphabetic forms to corresponding ending forms
(GSUB lookup type 1).

Application interface: The application is responsible for noting word boundaries. For GIDs at the ends of words
and found in the fina coverage table, the application passes a GID to the feature and gets back a new GID.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Can be used in any alphabetic script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and medi.

Tag: 'frac'

Friendly name: Fractions

Function: Replaces figures separated by a slash with 'common' (diagonal) fractions.

Example: The user enters 3/4 in a recipe and gets the threequarters fraction.

Recommended implementation: The frac table maps sets of figures separated by slash or fraction characters
to corresponding fraction glyphs in the font. These may be precomposed fractions (GSUB lookup type 4) or
arbitrary fractions (GSUB lookup type 1).

Application interface: The application must define the full sequence of GIDs to be replaced, based on user
input (i.e. user selection determines the string's delimitation). When the full sequence is found in the frac
coverage table, the application passes the sequence to the frac table and gets a new GID in return. When the
frac table does not contain an exact match, the application performs two steps. First, it uses the numr feature
(see below) to replace figures (as used in the numr coverage table) preceding the slash with numerators, and
to replace the typographic slash character (U+002F) with the fraction slash character (U+2044). Second, it
uses the dnom feature (see below) to replace all remaining figures (as listed in the dnom coverage table) with
denominators.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may require the application to call the numr and dnom features. It may be
used in combination with other substitution (GSUB) features, whose results it may override.

Tag: 'fwid'

Friendly name: Full Widths

Function: Replaces glyphs set on other widths with glyphs set on full (usually em) widths. In a CJKV font, this
may include "lower ASCII" Latin characters and various symbols. In a European font, this feature replaces
proportionally-spaced glyphs with monospaced glyphs, which are generally set on widths of 0.6 em.

Example: The user may invoke this feature in a Japanese font to get full monospaced Latin glyphs instead of
the corresponding proportionally-spaced versions.

Recommended implementation: The font may contain alternate glyphs designed to be set on full widths
(GSUB lookup type 1), or it may specify alternate (full-width) metrics for the proportional glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the fwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 303

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Applies to any script which can use monospaced forms.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, halt, hwid,
palt, pwid, qwid and twid), which should be turned off when it's applied. It deactivates the kern feature..

Tag: "half"

Friendly name: Half Forms

Function: Produces the half forms of consonants in Indic scripts.

Example: In Hindi (Devanagari script), the conjunct KKa, obtained by doubling the Ka, is denoted with a half
form of Ka followed by the full form.

Recommended implementation: The half table maps the sequence of a consonant followed by a virama
(halant) to its half form (GSUB lookup type 4).

Application interface: For substitution sequences defined in the half table [consonant followed by the virama
(halant)], the application passes the sequence of GIDs to the table, and gets back the GID for the half form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts that show similarity to Devanagari.

Feature interaction: This feature overrides the results of all other features, except akhn .

Tag: "haln"

Friendly name: Halant Forms

Function: Produces the halant forms of consonants in Indic scripts.

Example: In Sanskrit (Devanagari script), syllable final consonants are frequently required in their halant form.

Recommended implementation: The haln table maps the sequence of a consonant followed by a virama
(halant) to its halant form (GSUB lookup type 4).

Application interface: For substitutions defined in the halant table, the application passes the sequence of
GIDs to the feature (essentially the consonant and virama), and gets back the GID for the halant form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'halt'

Friendly name: Alternate Half Widths

Function: Respaces glyphs designed to be set on full-em widths, fitting them onto half-em widths. This differs
from hwid in that it does not substitute new glyphs.

Example: The user may invoke this feature in a CJKV font to get better fit for punctuation or symbol glyphs
without disrupting the monospaced alignment.

Recommended implementation: The font specifies alternate metrics for the full-width glyphs (GPOS lookup
type 1).

ISO/IEC FDIS 14496-22:2006(E)

304 © ISO/IEC 2006 — All rights reserved

Application interface: For GIDs found in the halt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, fwid, hwid,
palt, twid), which should be turned off when it's applied. It deactivates the kern feature. See also vhal.

Tag: 'hist'

Friendly name: Historical Forms

Function: Some letterforms were in common use in the past, but appear anachronistic today. The best-known
example is the long form of s; others would include the old Fraktur k. Some fonts include the historical forms
as alternates, so they can be used for a 'period' effect. This feature replaces the default (current) forms with
the historical alternates. While some ligatures are also used for historical effect, this feature deals only with
single characters.

Example: The user applies this feature in Adobe Jenson to get the archaic forms of M, Q and Z.

Recommended implementation: The hist table maps default forms to corresponding historical forms (GSUB
lookup type 1).

Application interface: For GIDs found in the hist coverage table, the application passes the GIDs to the hist
table and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'hkna'

Friendly name: Horizontal Kana Alternates

Function: Replaces standard kana with forms that have been specially designed for only horizontal writing.
This is a typographic optimization for improved fit and more even color. Also see vkna.

Example: Standard full-width kana (hiragana and katakana) are replaced by forms that are designed for
horizontal use.

Recommended implementation: The font includes a set of specially-designed glyphs, listed in the hkna
coverage table. The hkna feature maps the standard full-width forms to the corresponding special horizontal
forms (GSUB lookup type 1).

Application interface: For GIDs found in the hkna coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion:This feature would be off by default.

Script/language sensitivity: Applies only to fonts that support kana (hiragana and katakana).

Feature interaction: This feature may be used with the kern feature. Since it is for horizontal use, features
applying to vertical behaviors (e.g. vkna, vert, vrt2 or vkrn) do not apply.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 305

Tag: 'hlig'

Friendly name: Historical Ligatures

Function: Some ligatures were in common use in the past, but appear anachronistic today. Some fonts include
the historical forms as alternates, so they can be used for a 'period' effect. This feature replaces the default
(current) forms with the historical alternates.

Example: The user applies this feature using Palatino Linotype, and historic ligatures are formed for all long s
forms, including: long s+t, long s+b, long s+h, long s+k, and several others.

Recommended implementation: The hlig table maps default ligatures and character combinations to
corresponding historical ligatures (GSUB lookup type 1).

Application interface: For GIDs found in the hlig coverage table, the application passes the GIDs to the hlig
table and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of all other features.

Tag: 'hngl'

Friendly name: Hangul

Function: Replaces hanja (Chinese-style) Korean characters with the corresponding hangul (syllabic)
characters. This effectively reverses the standard input method, in which hangul are entered and replaced by
hanja. Many of these substitutions are one-to-one (GSUB lookup type 1), but hanja substitution often requires
the user to choose from several possible hangul characters (GSUB lookup type 3).

Example: The user may call this feature to get U+AC00 from U+4F3D.

Recommended implementation: This table associates each hanja character in the font with one or more
hangul characters. The manufacturer may choose to build two tables (one for each lookup type) or only one
which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates should be
ordered consistently across a family, so that those alternates can work correctly when switching between
family members.

Application interface: For GIDs found in the hngl coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired.
NOTE This is a change of semantic value. Besides the original character codes (when entered as hanja), the
application should store the code for the new character.

UI suggestion: This feature should be inactive by default. The application may note the user's choice when
selecting from multiple hangul, and offer it as a default the next time the source hanja character is
encountered. In the absence of such prior information, the application may assume that the first hangul in a
set is the preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Korean only.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vert and vrt2 may be used in addition.

Tag: 'hwid'

Friendly name: Half Widths

ISO/IEC FDIS 14496-22:2006(E)

306 © ISO/IEC 2006 — All rights reserved

Function: Replaces glyphs on proportional widths, or fixed widths other than half an em, with glyphs on half-
em (en) widths. Many CJKV fonts have glyphs which are set on multiple widths; this feature selects the half-
em version. There are various contexts in which this is the preferred behavior, including compatibility with
older desktop documents.

Example: The user may replace a proportional Latin glyph with the same character set on a half-em width.

Recommended implementation: The font may contain alternate glyphs designed to be set on half-em widths
(GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1) which
adjust their spacing to fit in half-em widths.

Application interface: For GIDs found in the hwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. tnum, fwid, halt,
qwid and twid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'init'

Friendly name: Initial Forms

Function: Replaces glyphs at the beginnings of words with alternate forms designed for this use. This is
common in Latin connecting scripts, and required in various non-Latins like Arabic.

Example: In the typeface Ex Ponto, the default t in the word 'type' is replaced with the t.begin form.

Recommended implementation: The init table maps default alphabetic forms to corresponding beginning
forms (GSUB lookup type 1).

Application interface: The application is responsible for noting word boundaries. For GIDs at the beginnings of
words and found in the init coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Can be used in any alphabetic script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also medi and fina.

Tag: "isol"

Friendly name: Isolated Forms

Function: Replaces the nominal form of glyphs with their isolated forms.

Example: In Arabic, if the Alef is followed by Lam, the default glyph for Alef is replaced with its isolated form.

Recommended implementation: The isol table maps default alphabetic forms to corresponding isolated forms
(GSUB lookup type 1).

Application interface: For GIDs found in the isol coverage table, the application passes a GID to the feature
and gets back a new GID for the isolated form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Can be used in any cursive script.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 307

Feature interaction: This feature overrides the results of all other features. See also init, medi, fina.

Tag: 'ital'

Friendly name: Italics

Function: Some fonts (such as Adobe's Pro Japanese fonts) will have both Roman and Italic forms of some
characters in a single font. This feature replaces the Roman glyphs with the corresponding Italic glyphs.

Example: The user would apply this feature to replace B with B.

Recommended implementation: The ital table maps the Roman forms in a font to the corresponding Italic
forms (GSUB lookup type 1).

Application interface: For GIDs found in the ital coverage table, the application passes the GIDs to the table
and gets back one new GID for each.

UI suggestion: When a user selects text and applies an Italic style, an application should check for this feature
and use it if present.

Script/language sensitivity: Applies mostly to Latin; but it should be noted that many non-Latin fonts contain
Latin as well.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. In CJKV fonts it should activate the kern feature (which would be on anyway in other
scripts).

Tag: "jalt"

Friendly name: Justification Alternates

Function: Improves justification of text by replacing glyphs with alternate forms specifically designed for this
purpose (they would have less or more advance width as need may be).

Example: In the Arabic script, providing alternate forms for line final glyphs would result in better justification
and reduce the use of tatweels (Kashidas). eg. replacing a Swash Kaf with an alternate form.

Recommended implementation: The jalt table maps the initial, medial, final or isolated forms to their
corresponding alternate forms (GSUB lookup type 3).

Application interface: The application is responsible for noting line ends/boundaries. For GIDs found in the jalt
coverage table, the application passes a GID to the feature and gets back a new GID.

UI suggestion: This feature could be made active or inactive by default, at the user's preference.

Script/language sensitivity: Can be used in any cursive script.

Feature interaction: If the font contains init, medi, fina, isol features, these need to be called prior to calling
this feature.

Tag: 'jp78'

Friendly name: JIS78 Forms

Function: This feature replaces default (JIS90) Japanese glyphs with the corresponding forms from the JIS C
6226-1978 (JIS78) specification.

Example: The user would invoke this feature to replace kanji character U+5516 with U+555E.

ISO/IEC FDIS 14496-22:2006(E)

308 © ISO/IEC 2006 — All rights reserved

Recommended implementation: When JIS90 glyphs correspond to JIS78 forms, the jp78 table maps each of
those glyphs to their alternates. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions.

Application interface: For GIDs found in the jp78 coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired. The application may assume that the first glyph in a set is the preferred
form, so the font developer should order them accordingly.
NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: 'jp83'

Friendly name: JIS83 Forms

Function: This feature replaces default (JIS90) Japanese glyphs with the corresponding forms from the JIS X
0208-1983 (JIS83) specification.

Example: Because of the Han unification in Unicode, there are no JIS83 glyphs which have distinct Unicode
values, so the substitution cannot be described specifically.

Recommended implementation: When JIS90 glyphs correspond to JIS83 forms, the jp83 table maps each of
those glyphs to their alternates (GSUB lookup type 1).

Application interface: For GIDs found in the jp83 coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the palt, vpal, vert and vrt2 features, which may be used in addition.

Tag: 'jp90'

Friendly name: JIS90 Forms

Function: This feature replaces Japanese glyphs from the JIS78 or JIS83 specifications with the
corresponding forms from the JIS X 0208-1990 (JIS90) specification.

Example: The user would invoke this feature to replace kanji character U+555E with U+5516.

Recommended implementation: The jp90 table maps each JIS78 and JIS83 form in a font to JIS90 forms
(GSUB lookup type 1). The application stores a record of any simplified forms which resulted from
substitutions (the jp78 or jp83 features); for such forms, applying the jp90 feature undoes the previous
substitution. When there is no record of a substitution, the application uses the jp90 table to get back to the
default form.

Application interface: For GIDs found in the jp90 coverage table, the application passes the GIDs to the table
and gets back one new GID for each.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 309

NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Tag: 'kern'

Friendly name: Kerning

Function: Adjusts amount of space between glyphs, generally to provide optically consistent spacing between
glyphs. Although a well-designed typeface has consistent inter-glyph spacing overall, some glyph
combinations require adjustment for improved legibility. Besides standard adjustment in the horizontal
direction, this feature can supply size-dependent kerning data via device tables, "cross-stream" kerning in the
Y text direction, and adjustment of glyph placement independent of the advance adjustment.
NOTE This feature may apply to runs of more than two glyphs, and would not be used in monospaced fonts. This
feature does not apply to text set vertically.

Example: The o is shifted closer to the T in the combination "To."

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type 2
or 8). These may be stored as one or more tables matching left and right classes, &/or as individual pairs.
Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.) to overwrite
the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the kern table, and gets back adjusted
positions (XPlacement, XAdvance, YPlacement and YAdvance) for those GIDs. When using the type 2 lookup
on a run of glyphs, it's critical to remember to not consume the last glyph, but to keep it available as the first
glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature should be active by default for horizontal text setting. Applications may wish to
allow users to add further manually-specified adjustments to suit specific needs and tastes.

Script/language sensitivity: None.

Feature interaction: If 'kern' is activated, 'palt' must also be activated if it exists. (If 'palt' is activated, there is no
requirement that 'kern' must also be activated.) May be used in addition to any other feature except those
which result in fixed (uniform) advance widths (e.g. fwid, halt, hwid, qwid and twid).

Tag: 'lfbd'

Friendly name: Left Bounds

Function: Aligns glyphs by their apparent left extents at the left ends of horizontal lines of text, replacing the
default behavior of aligning glyphs by their origins. This feature is called by the Optical Bounds (opbd) feature
above.

Example: Succeeding lines beginning with T, D and W would shift to the left by varying amounts when the text
is left-justified and this feature is applied.

Recommended implementation: Values for affected glyphs describe the amount by which the placement and
advance width should be altered (GPOS lookup type 1).

Application interface: For GIDs found in the lfbd coverage table, the application passes a GID to the table and
gets back a new XPlacement and XAdvance value.

UI suggestion: This feature is called by an application when the user invokes the opbd feature.

ISO/IEC FDIS 14496-22:2006(E)

310 © ISO/IEC 2006 — All rights reserved

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Is called by the opbd feature.

Tag: 'liga'

Friendly name: Standard Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers the ligatures which the designer/manufacturer judges should be used in normal conditions.

Example: The glyph for ffl replaces the sequence of glyphs f f l.

Recommended implementation: The liga table maps sequences of glyphs to corresponding ligatures (GSUB
lookup type 4). Ligatures with more components must be stored ahead of those with fewer components in
order to be found. The set of standard ligatures will vary by design and script.

Application interface: For sets of GIDs found in the liga coverage table, the application passes the sequence
of GIDs to the table and gets back a single new GID. Full sequences must be passed.

UI suggestion: This feature serves a critical function in some contexts, and should be active by default.

Script/language sensitivity: Applies to virtually all scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: "ljmo"

Friendly name: Leading Jamo Forms

Function: Substitutes the leading jamo form of a cluster.

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of leading class jamos are found, their combined leading jamo form is
substituted.

Recommended implementation: The ljmo table maps the sequence required to convert a series of jamos into
its leading jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the ljmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the leading jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'lnum'

Friendly name: Lining Figures

Function: This feature changes selected figures from oldstyle to the default lining form.

Example: The user invokes this feature in order to get lining figures, which fit better with all-capital text.
Various characters designed to be used with figures may also be covered by this feature. In cases where
lining figures are the default form, this feature would undo previous substitutions.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 311

Recommended implementation: The lnum table maps each oldstyle figure, and any associated characters to
the corresponding lining form (GSUB lookup type 1).

Application interface: For GIDs found in the lnum coverage table, the application passes a GID to the onum
table and gets back a new GID. Even if the current figures resulted from an earlier substitution, it may not be
correct to simply revert to the original GIDs, because of interaction with the figure width features, so it's best to
use this table.

UI suggestion: This feature should be inactive by default. Users can switch between the lining and oldstyle
sets by turning this feature on or off.
NOTE This feature is distinct from the figure width features (pnum and tnum). When the user invokes this feature, the
application may wish to inquire whether a change in width is also desired.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Oldstyle Figures feature (onum).

Tag: 'locl'

Friendly name: Localized Forms

Function: Many scripts used to write multiple languages over wide geographical areas have developed
localized variant forms of specific letters, which are used by individual literary communities. For example, a
number of letters in the Bulgarian and Serbian alphabets have forms distinct from their Russian counterparts
and from each other. In some cases the localized form differs only subtly from the script 'norm', in others the
forms are radically distinct. This feature enables localized forms of glyphs to be substituted for default forms.

Example: The user applies this feature to text to enable localized Bulgarian forms of Cyrillic letters;
alternatively, the feature might enable localized Russian forms in a Bulgarian manufactured font in which the
Bulgarian forms are the default characters.

Recommended implementation: For a given Unicode value, the font contains glyphs for two or more locales.
The locl table maps GIDs for default forms to GIDs for corresponding localized alternatives. These are one-to-
one substitutions (GSUB lookup type 1).

Application interface: Localized forms are associated with specific languages and are activated by language
tags. Which glyph is used as the localized form should be determined by the language the user has specified.
The user can switch localized forms by selecting a new language, or may enable default forms by switching
off the locl feature.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Applies to all scripts and languages; but of course behavior differs by script and
language.

Feature interaction: This feature can be used in combination with any other feature. It replaces and extends
the earlier locale-specific tags zhcn, zhtw, jajp, kokr and vivn which had been defined for CJKV scripts.

Tag: 'mark'

Friendly name: Mark Positioning

Function: Positions mark glyphs with respect to base glyphs.
Example: In the Arabic script, positioning the Hamza above the Yeh.

Recommended implementation: This feature may be implemented as a MarkToBase Attachment lookup
(GPOS LookupType = 4) or a MarkToLigature Attachment lookup (GPOS LookupType = 5).

ISO/IEC FDIS 14496-22:2006(E)

312 © ISO/IEC 2006 — All rights reserved

Application interface: For GIDs found in the mark coverage table, the application gets back the positioning or
position adjustment values for the mark glyph.

UI suggestion: This feature should be active by default.

Script/language sensitivity: None.

Feature interaction: None.

Tag: "med2"

Friendly name: Medial Form #3

Function: Replaces Alaph glyphs in the middle of Syriac words when the preceding base character cannot be
joined to.

Example: When an Alaph is preceded by a Waw, the Alaph would be replaced by an appropriate form.
This feature is used only for the Syriac script alaph character.

Recommended implementation: The med2 table maps default alphabetic forms to corresponding medial
forms (GSUB lookup type 5).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middle of
words and found in the med2 coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Used only with the Syriac script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

Tag: 'medi'

Friendly name: Medial Forms

Function: Replaces glyphs in the middles of words (i.e. following a beginning and preceding an end) with
alternate forms designed for this use.
NOTE This is different from the default form, which is designed for stand-alone use. This is common in Latin
connecting scripts, and required in various non-Latins like Arabic.

Example: In the typeface Caflisch Script, the y and p in the word 'type' are replaced by the y.med and p.med
forms.

Recommended implementation: The medi table maps default alphabetic forms to corresponding medial forms
(GSUB lookup type 1).

Application interface: The application is responsible for noting word boundaries. For GIDs in the middles of
words and found in the medi coverage table, the application passes a GID to the feature and gets back a new
GID.

UI suggestion: This feature should be active by default.

Script/language sensitivity: Can be used in any alphabetic script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also init and fina.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 313

Tag: 'mgrk'

Friendly name: Mathematical Greek

Function: Replaces standard typographic forms of Greek glyphs with corresponding forms commonly used in
mathematical notation (which are a subset of the Greek alphabet).

Example: The user applies this feature to U+03A3 (Sigma), and gets U+2211 (summation).

Recommended implementation: The mgrk table maps Greek glyphs to the corresponding forms used for
mathematics (GSUB lookup type 1).

Application interface: For GIDs found in the mgrk coverage table, the application passes a GID to the feature
table and gets back a new GID.
NOTE This is a change of semantic value. Besides the original character codes, the application should store the
code for the new character.

UI suggestion: This feature should be off by default in most applications. Math-oriented applications may want
to activate this feature by default.

Script/language sensitivity: Could apply to any font which includes coverage for the Greek script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: "mkmk"

Friendly name: Mark to Mark Positioning

Function: Positions marks with respect to other marks. Required in various non-Latin scripts like Arabic.

Example: In Arabic, the ligaturised mark Ha with Hamza above it; can also be obtained by positioning these
marks relative to one another.

Recommended implementation: This feature may be implemented as a MarkToMark Attachment lookup
(GPOS lookup type 6).

Application interface: The application gets back positioning values or positional adjustments for marks.

UI suggestion: This feature should be active by default.

Script/language sensitivity: None.

Feature interaction: None.

Tag: 'mset'

Function: Positions Arabic combining marks in fonts for Windows 95 using glyph substitution
Example: In Arabic, the Hamza is positioned differently when placed above a Yeh Barree as compared to the
Alef.

Tag: 'nalt'

Friendly name: Alternate Annotation Forms

ISO/IEC FDIS 14496-22:2006(E)

314 © ISO/IEC 2006 — All rights reserved

Function: Replaces default glyphs with various notational forms (e.g. glyphs placed in open or solid circles,
squares, parentheses, diamonds or rounded boxes). In some cases an annotation form may already be
present, but the user may want a different one.

Example: The user invokes this feature to get U+3200 (the circled form of 'ga') from U+3131 (hangul 'ga').

Recommended implementation: The nalt table maps GIDs for various standard forms to one or more
corresponding annotation forms. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions. If more than one form is
present, the set of forms for each character should be ordered consistently - both within the font and across
the family.

Application interface: For GIDs found in the nalt coverage table, the application passes a GID and gets back a
set of new GIDs, then stores the one selected by the user.

UI suggestion: This feature should be inactive by default. The application must provide a means for the user to
select the desired form from the set returned by the table. It can note the position of the selected form in a set
of alternates, and offer the glyph at that position as the default selection the next time this feature is invoked.
In the absence of such prior information, the application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Used mostly in CJKV fonts, but can apply to European scripts.

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it's applied, except the vert and vrt2 features, which may be used in addition.

Tag: "nlck"

Friendly name: NLC Kanji Forms

Function: The National Language Council (NLC) of Japan has defined new glyph shapes for a number of JIS
characters. The 'nlck' feature is used to access those glyphs.

Example: The glyph is replaced by the glyph .

Recommended implementation: One-for-one substitution of non-NLC glyphs by the corresponding NLC glyph.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Used only with Kanji script.

Feature interaction: This feature is exclusive with the 'jp78', 'jp83', 'jp90' and similar features. It can be
combined with the 'palt', 'vpal', 'vert' and 'vrt2' features.

Tag: "nukt"

Friendly name: Nukta Forms

Function: Produces Nukta forms in Indic scripts.

Example: In Hindi (Devanagari script), a consonant when combined with a nukta gives its nukta form.

Recommended implementation: The nukt table maps the sequence of a consonant followed by a nukta to the
consonant's nukta form (GSUB lookup type 4).

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 315

Application interface: The application passes the sequence of GIDs (consonant and nukta), to the table, and
gets back the GID for the nukta form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'numr'

Friendly name: Numerators

Function: Replaces selected figures which precede a slash with numerator figures, and replaces the
typographic slash with the fraction slash.

Example: In the string 11/17 selected by the user, the application turns the 11 into numerators, and the slash
into a fraction slash when the user applies the fraction feature (frac).

Recommended implementation: The numr table maps sets of figures and related characters to corresponding
numerator glyphs in the font. It also maps the typographic slash (U+002F) to the fraction slash (U+2044). All
mappings are one-to-one (GSUB lookup type 1).

Application interface: For GIDs found in the numr coverage table, the application passes a GID to the table
and gets back a new GID.

UI suggestion: This feature should normally be called by an application when the user applies the frac feature.

Script/language sensitivity: None.

Feature interaction: This feature supports frac. It may be used in combination with other substitution (GSUB)
features, whose results it may override.

Tag: 'onum'

Friendly name: Oldstyle Figures

Function: This feature changes selected figures from the default lining style to oldstyle form.

Example: The user invokes this feature to get oldstyle figures, which fit better into the flow of normal upper-
and lowercase text. Various characters designed to be used with figures may also have oldstyle versions.

Recommended implementation: The onum table maps each lining figure, and any associated characters, to
the corresponding oldstyle form (GSUB lookup type 1).

Application interface: For GIDs found in the onum coverage table, the application passes a GID to the onum
table and gets back a new GID.

UI suggestion: Users can switch between the lining and oldstyle sets by turning this feature on or off.
NOTE This feature is separate from the figure-width features pnum and tnum. When the user changes figure style,
the application may want to query whether a change in width is also desired.

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Lining Figures feature (lnum).

Tag: 'opbd'

Friendly name: Optical Bounds

ISO/IEC FDIS 14496-22:2006(E)

316 © ISO/IEC 2006 — All rights reserved

Function: Aligns glyphs by their apparent left or right extents in horizontal setting, or apparent top or bottom
extents in vertical setting, replacing the default behavior of aligning glyphs by their origins. Another name for
this behavior would be visual justification. The optical edge of a given glyph is only indirectly related to its
advance width or bounding box; this feature provides a means for getting true visual alignment.

Example: Succeeding lines beginning with T, D and W would shift to the left by varying amounts when the text
is left-justified and this feature is applied. Succeeding lines ending with r, h and y would likewise shift to the
right by differing degrees when the text is right-justified and this feature is applied.

Recommended implementation: Values for affected glyphs are defined with a separate record for left, right,
top, and bottom. Each record describes the amount by which the placement and advance width should be
altered (GPOS lookup type 1).

Application interface: For GIDs found in the opbd coverage table, the application calls one of two related
tables, depending on the position of the glyph. For glyphs at the left end of a horizontal line, it calls the lfbd
table, for glyphs at the right end of a horizontal line, it calls the rtbd table.

UI suggestion: This feature should be active by default. It effectively changes the line length, so justification
algorithms should account for this adjustment.

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Uses lfbd and rtbd features.

Tag: 'ordn'

Friendly name: Ordinals

Function: Replaces default alphabetic glyphs with the corresponding ordinal forms for use after figures. One
exception to the follows-a-figure rule is the numero character (U+2116), which is actually a ligature
substitution, but is best accessed through this feature.

Example: The user applies this feature to turn 2.o into 2.o (abbreviation for secundo).

Recommended implementation: The ordn table maps various lowercase letters to corresponding ordinal forms
in a chained context (GSUB lookup type 6), and the sequence No to the numero character (GSUB lookup type
4).

Application interface: For sets of GIDs found in the clig coverage table, the application passes the sequence
of GIDs to the table and gets back new GIDs. Full sequences must be passed.
NOTE This may be a change of semantic value. Besides the original character codes, the application should store
the code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies mostly to Latin script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'ornm'

Friendly name: Ornaments

Function: This is a dual-function feature, which uses two input methods to give the user access to ornament
glyphs (e.g. fleurons, dingbats and border elements) in the font. One method replaces the bullet character with
a selection from the full set of available ornaments; the other replaces specific "lower ASCII" characters with

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 317

ornaments assigned to them. The first approach supports the general or browsing user; the second supports
the power user.

Example: The user inputs qwwwwwwwwwe to form the top of a flourished box in Adobe Caslon, or inputs the
bullet character, then chooses the thistle dingbat.

Recommended implementation: The ornm table maps all ornaments in a font to the bullet character (GSUB
lookup type 3) and each ornament in a font to a corresponding alphanumeric character (GUSB lookup type 1).
The manufacturer may choose to build two tables (one for each lookup type) or only one which uses lookup
type 3 for all substitutions. As in any one-from-many substitution, alternates present in more than one face
should be ordered consistently across a family, so that those alternates can work correctly when switching
between family members.

Application interface: When this feature is invoked, the application must note whether the selected text is the
bullet character (U+2022) or alphanumeric characters. In the first case, it passes the GID for bullet to the ornm
table and gets back a set of GIDs, and gives the user a means to select from among them. In the second case,
for GIDs found in the ornm coverage table, it passes GIDs to the ornm table and gets back new GIDs.

UI suggestion: This feature should be inactive by default. When more than one GID is returned (the bullet
case), an application could display the forms sequentially in context, or present a palette showing all the forms
at once, or give the user a choice between these approaches. Once the user has selected a specific ornament,
that one should be the default selection the next time the bullet is typed. In the absence of such prior
information, the application may assume that the first ornament in a set is the preferred form, so the font
developer should order them accordingly.

Script/language sensitivity: None.

Feature interaction: This feature is mutually exclusive with all other substitution (GSUB) features, which
should be turned off when it's applied.

Tag: 'palt'

Friendly name: Proportional Alternate Widths

Function: Respaces glyphs designed to be set on full-em widths, fitting them onto individual (more or less
proportional) horizontal widths. This differs from pwid in that it does not substitute new glyphs (GPOS, not
GSUB feature). The user may prefer the monospaced form, or may simply want to ensure that the glyph is
well-fit and not rotated in vertical setting (Latin forms designed for proportional spacing would be rotated).

Example: The user may invoke this feature in a Japanese font to get Latin, Kanji, Kana or Symbol glyphs with
the full-width design but individual metrics.

Recommended implementation: The font specifies alternate metrics for the full-width glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the palt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid,
qwid and twid), which should be turned off when it's applied. If palt is activated, there is no requirement that
kern must also be activated. If kern is activated, palt must also be activated if it exists.. See also vpal.

Tag:'pcap'

Friendly name: Petite Capitals

ISO/IEC FDIS 14496-22:2006(E)

318 © ISO/IEC 2006 — All rights reserved

Function: Some fonts contain an additional size of capital letters, shorter than the regular smallcaps and
whimsically referred to as petite caps. Such forms are most likely to be found in designs with a small
lowercase x-height, where they better harmonise with lowercase text than the taller smallcaps (for examples
of petite caps, see the Emigre type families Mrs Eaves and Filosofia). This feature turns lowercase characters
into petite capitals. Forms related to petite capitals, such as specially designed figures, may be included.

Example: The user enters text as lowercase or mixed case, and gets petite cap text or text with regular
uppercase and petite caps.
NOTE Some designers, might extend the petite cap lookups to include uppercase-to-smallcap substitutions, creating
a shifting hierarchy of uppercase forms.

Recommended implementation: The pcap table maps lowercase glyphs to the corresponding petite cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the pcap coverage table, the application passes GIDs to the pcap
table, and gets back new GIDs. Petite cap substitutions should follow language rules for smallcap (smcp)
substitutions.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'pnum'

Friendly name: Proportional Figures

Function: Replaces figure glyphs set on uniform (tabular) widths with corresponding glyphs set on glyph-
specific (proportional) widths. Tabular widths will generally be the default, but this cannot be safely assumed.
Of course this feature would not be present in monospaced designs.

Example: The user may apply this feature to get even spacing for lining figures used as dates in an all-cap
headline.

Recommended implementation: In order to simplify associated kerning and get the best glyph design for a
given width, this feature should use new glyphs for the figures, rather than only adjusting the fit of the tabular
glyphs (although some may be simple copies); i.e. not a GPOS feature. The pnum table maps tabular
versions of lining and/or oldstyle figures to corresponding proportional glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the pnum coverage table, the application passes GIDs to the pnum
table and gets back new GIDs.

UI suggestion: This feature should be off by default. The application may want to query the user about this
feature when the user changes figure style (onum or lnum).

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Tabular Figures feature (tnum).

Tag: 'pref'

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 319

Friendly name: Pre-base Forms

Function: Substitutes the pre-base form of a consonant.

Example: In the Khmer script, the consonant Ra has a pre-base subscript form subscript called Coeng Ra.
When the sequence of Coeng followed by Ra, its pre-base form is substituted.

Recommended implementation: The pref table maps the sequence required to convert a consonant into its
pre-base form (GSUB lookup type 4).

Application interface: For substitutions defined in the pref table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the pre base form of the consonant.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Khmer and Myanmar (Burmese) scripts that have pre-base forms for
consonants.

Feature interaction: This feature overrides the results of all other features.

Tag: 'pres'

Friendly name: Pre-base Substitutions

Function: Produces the pre-base forms of conjuncts in Indic scripts. It can also be used to substitute the
appropriate glyph variant for pre-base vowel signs.

Example: In the Gujarati (Indic) script, the doubling of consonant Ka requires the first Ka to be substituted by
its pre-base form. This in turn ligates with the second Ka. Applying this feature would result in the ligaturised
version of the doubled Ka.

Recommended implementation: The pres table maps a sequence of consonants separated by the virama
(halant), to the ligated conjunct form (GSUB lookup type 4). In the case of pre-base matra substitution, the
appropriate matra can be substituted using contextual substitution (GSUB lookup type 5).

Application interface: For substitutions defined in the pres table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the ligature (or matra as the case may be).

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'pstf'

Friendly name: Post-base Forms

Function: Substitutes the post-base form of a consonant.

Example: In the Gurmukhi (Indic) script, the consonant Ya has a post base form. When the Ya is used as the
second consonant in conjunct formation, its post-base form is substituted.

Recommended implementation: The pstf table maps the sequence required to convert a consonant into its
post-base form (GSUB lookup type 4).

Application interface: For substitutions defined in the pstf table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the post base form of the consonant.

UI suggestion: This feature should be on by default.

ISO/IEC FDIS 14496-22:2006(E)

320 © ISO/IEC 2006 — All rights reserved

Script/language sensitivity: Required in Indic scripts that have post-base forms for consonants eg: Gurmukhi,
Malayalam.

Feature interaction: This feature overrides the results of all other features.

Tag: 'psts'

Friendly name: Post-base Substitutions

Function: Substitutes a sequence of a base glyph and post-base glyph, with its ligaturised form.

Example: In the Malayalam (Indic) script, the consonant Va has a post base form. When the Va is doubled to
form a conjunct- VVa; the first Va [base] and the post base form that follows it, is substituted with a ligature.

Recommended implementation: The psts table maps identified conjunct formation sequences to
corresponding ligatures (GSUB lookup type 4).

Application interface: For substitutions defined in the psts table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the ligature.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Can be used in any alphabetic script. Required in Indic scripts.

Feature interaction: This feature overrides the results of all other features.

Tag: 'pwid'

Friendly name: Proportional Widths

Function: Replaces glyphs set on uniform widths (typically full or half-em) with proportionally spaced glyphs.
The proportional variants are often used for the Latin characters in CJKV fonts, but may also be used for Kana
in Japanese fonts.

Example: The user may invoke this feature in a Japanese font to get a proportionally-spaced glyph instead of
a corresponding half-width Roman glyph or a full-width Kana glyph.

Recommended implementation: The font contains alternate glyphs designed to be set on proportional widths
(GSUB lookup type 1).

Application interface: For GIDs found in the pwid coverage table, the application passes the GIDs to the table
and gets back new GIDs.

UI suggestion: Applications may want to have this feature active or inactive by default depending on their
markets.

Script/language sensitivity: Although used mostly in CJKV fonts, this feature could be applied in European
scripts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid,
palt, qwid, twid, valt and vhal), which should be turned off when it's applied. Applying this feature should
activate the kern feature.

Tag: 'qwid'

Friendly name: Quarter Widths

Function: Replaces glyphs on other widths with glyphs set on widths of one quarter of an em (half an en). The
characters involved are normally figures and some forms of punctuation.

Example: The user may apply qwid to place a four-digit figure in a single slot in a column of vertical text.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 321

Recommended implementation: The font may contain alternate glyphs designed to be set on quarter-em
widths (GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1)
which adjust their spacing to fit in quarter-em widths.

Application interface: For GIDs found in the qwid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid
and twid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'rand'

Friendly name: Randomize

Function: In order to emulate the irregularity and variety of handwritten text, this feature allows multiple
alternate forms to be used.

Example: The user applies this feature in FF Kosmic to get three forms of f in one word.

Recommended implementation: The rand table maps GIDs for default glyphs to one or more GIDs for
corresponding alternates (GSUB lookup type 3).

Application interface: For GIDs found in the rand coverage table, the application passes a GID to the rand
table and gets back one or more new GIDs. The application selects one of these either by a pseudo-random
algorithm, or by noting the sequence of IDs returned, storing that sequence, and stepping through that set as
the corresponding character code is invoked.

UI suggestion: This feature should be enabled/disabled via a preference setting; "enabled" is the
recommended default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'rlig'

Friendly name: Required Ligatures

Function: Replaces a sequence of glyphs with a single glyph which is preferred for typographic purposes. This
feature covers those ligatures, which the script determines as required to be used in normal conditions. This
feature is important for some scripts to insure correct glyph formation.

Example: The Arabic character lam followed by alef will always form a ligated lamalef form. This ligated form
is a requirement of the script's shaping. The same happens with the Syriac script.

Recommended implementation: The rlig table maps GIDs for default glyphs to one or more GIDs for
corresponding alternates (GSUB lookup type 3).

Application interface: The rlig table maps sequences of glyphs to corresponding ligatures (GSUB lookup type
4). Ligatures with more components must be stored ahead of those with fewer components in order to be
found. The set of standard ligatures will normally remain constant by script.

UI suggestion: This feature should be active by default. It is recommended that this feature not be turned off to
avoid breaking obligatory script shaping.

Script/language sensitivity: Applies to Arabic and Syriac. May apply to some other scripts.

ISO/IEC FDIS 14496-22:2006(E)

322 © ISO/IEC 2006 — All rights reserved

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. See also liga.

Tag: 'rphf'

Friendly name: Reph Form

Function: Substitutes the Reph form for a consonant and halant sequence.

Example: In the Devanagari (Indic) script, the consonant Ra possesses a reph form. When the Ra is a syllable
initial consonant and is followed by the virama, it is repositioned after the post base vowel sign within the
syllable, and also substituted with a mark that sits above the base glyph.

Recommended implementation: The rphf table maps the sequence of default form of Ra and virama to the
Reph (GSUB lookup type 4).

Application interface: The application gets back the GID for the reph mark.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts. eg: Devanagari, Kannada.

Feature interaction: This feature overrides the results of all other features.

Tag: 'rtbd'

Friendly name: Right Bounds

Function: Aligns glyphs by their apparent right extents at the right ends of horizontal lines of text, replacing the
default behavior of aligning glyphs by their origins. This feature is called by the Optical Bounds (opbd) feature
above.

Example: Succeeding lines ending with r, h and y would shift to the right by differing degrees when the text is
right-justified and this feature is applied.

Recommended implementation: Values for affected glyphs describe the amount by which the placement and
advance width should be altered (GPOS lookup type 1).

Application interface: For GIDs found in the rtbd coverage table, the application passes a GID to the table and
gets back a new XPlacement and XAdvance value.

UI suggestion: This feature is called by an application when the user invokes the opbd feature.

Script/language sensitivity: None.

Feature interaction: Should not be applied to glyphs which use fixed-width features (e.g. fwid, halt, hwid, qwid
and twid) or vertical features (e.g. vert, vrt2, vpal, valt and vhal). Is called by opbd feature.

Tag: 'rtla'

Friendly name: Right-to-left alternates

Function: A number of Unicode characters are rendered by different shapes depending on the directional
context in which they appear. For example, the character U+0028 LEFT PARENTHESIS is interpreted by the
Unicode Standard as an opening parenthesis and it appears as "(" in left-to-right contexts, and as ")" in right-
to-left contexts (this is described in the Unicode Standard). The 'rtla' feature is used to access the shape
appropriate for a right-to-left context.

Example: The 'rtla' feature replaces the glyph "(" by the glyph ")".

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 323

Recommended implementation: These are one-to-one substitutions (GSUB lookup type 1). Since this feature
is a glyph selection feature, it should probably be performed early in the shaping process. At least all the
glyphs mapped from characters with the mirrored property should have a replacement.

Application interface: The layout application applies the Unicode bidi algorithm to the character string to
display, and maps the resulting character string to glyphs via the cmap. It activates the 'rtla' feature on glyphs
that correspond to characters with an odd (right-to-left) resolved level. It is important to note that this feature
can be applied to more glyphs than those that correspond to characters with the mirrored property. The
motivation is that the font designer may want additional characters to assume different shapes.

If the 'rtla' feature is implemented, it must be implemented for all glyphs in the font that represent Unicode
characters with the mirrored property. If the 'rtla' feature is not implemented, it is assumed that the application
will take care of bidirectional mirroring through an algorithm.

UI suggestion: None.

Script/language sensitivity: Scripts that are right-to-left.

Feature interaction: This feature may be used in combination with other features.

Tag: 'ruby'

Friendly name: Ruby Notation Forms

Function: Japanese typesetting often uses smaller kana glyphs, generally in superscripted form, to clarify the
meaning of kanji which may be unfamiliar to the reader. These are called ruby, from the old typesetting term
for four-point-sized type. This feature identifies glyphs in the font which have been designed for this use,
substituting them for the default designs.

Example: The user applies this feature to the kana character U+3042, to get the ruby form for annotation.

Recommended implementation: The font contains alternate glyphs for all kana characters which are enabled
for ruby notation. The ruby table maps GIDs for default forms to GIDs for corresponding ruby alternates.
These are one-to-one substitutions (GSUB lookup type 1).

Application interface: For GIDs found in the ruby coverage table, the application passes the GIDs for default
forms to the table and gets back new GIDs for ruby forms. The application then scales and positions these
forms according to its defaults, which may take user parameters.

UI suggestion: This feature should be inactive by default. Applications may offer the user an opportunity to
specify the degree of scaling and baseline shift.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: This feature overrides the results of any other feature for the affected characters.

Tag: 'salt'

Friendly name: Stylistic Alternates

Function: Many fonts contain alternate glyph designs for a purely esthetic effect; these don't always fit into a
clear category like swash or historical. As in the case of swash glyphs, there may be more than one alternate
form. This feature replaces the default forms with the stylistic alternates.

Example: The user applies this feature to Industria to get the alternate form of g.

Recommended implementation: The salt table maps GIDs for default forms to one or more GIDs for
corresponding stylistic alternatives. While many of these substitutions are one-to-one (GSUB lookup type 1),
others require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables
(one for each lookup type) or only one which uses lookup type 3 for all substitutions. As in any one-from-many

ISO/IEC FDIS 14496-22:2006(E)

324 © ISO/IEC 2006 — All rights reserved

substitution, alternates present in more than one face should be ordered consistently across a family, so that
those alternates can work correctly when switching between family members.

Application interface: For GIDs found in the salt coverage table, the application passes the GIDs to the salt
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'sinf'

Friendly name: Scientific Inferiors

Function: Replaces lining or oldstyle figures with inferior figures (smaller glyphs which sit lower than the
standard baseline, primarily for chemical or mathematical notation). May also replace lowercase characters
with alphabetic inferiors.

Example: The application can use this feature to automatically access the inferior figures (more legible than
scaled figures).

Recommended implementation: The sinf table maps figures to the corresponding inferior forms (GSUB lookup
type 1).

Application interface: For GIDs found in the sinf coverage table, the application passes a GID to the feature
and gets back a new GID.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'size'

Friendly name: Optical size

Function: This feature stores two kinds of information about the optical size of the font: design size (the point
size for which the font is optimized) and size range (the range of point sizes which the font can serve well), as
well as other information which helps applications use the size range. The design size is useful for
determining proper tracking behavior. The size range is useful in families which have fonts covering several
ranges. Additional values serve to identify the set of fonts which share related size ranges, and to identify their
shared name.
NOTE Sizes refer to nominal final output size, and are independent of viewing magnification or resolution.

Required implementation:

The Feature table of this GPOS feature contains no lookups; its Feature Parameters field records an Offset
from the beginning of the Feature table to an array of five 16-bit unsigned integer values. The size feature
must be implemented in all fonts in any family which uses the feature. In this usage, a family is a set of fonts

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 325

which share a Preferred Family name (name ID 16), or Font Family name (name ID 1) if the Preferred Family
name is absent.

• The first value represents the design size in 720/inch units (decipoints). The design size entry must be
non-zero. When there is a design size but no recommended size range, the rest of the array will
consist of zeros.

• The second value has no independent meaning, but serves as an identifier that associates fonts in a
subfamily. All fonts which share a Preferred or Font Family name and which differ only by size range
shall have the same subfamily value, and no fonts which differ in weight or style shall have the same
subfamily value. If this value is zero, the remaining fields in the array will be ignored.

• The third value enables applications to use a single name for the subfamily identified by the second
value. If the preceding value is non-zero, this value must be set in the range 256 - 32767 (inclusive). It
records the value of a field in the name table, which must contain English-language strings encoded in
Windows Unicode and Macintosh Roman, and may contain additional strings localized to other scripts
and languages. Each of these strings is the name an application should use, in combination with the
family name, to represent the subfamily in a menu. Applications will choose the appropriate version
based on their selection criteria.

• The fourth and fifth values represent the small end of the recommended usage range (exclusive) and
the large end of the recommended usage range (inclusive), stored in 720/inch units (decipoints).
Ranges must not overlap, and should generally be contiguous.

Example: The size information in Bell Centennial is [60 0 0 0 0]. This tells an application that the fontâs design
size is six points, so larger sizes may need proportionate reduction in default inter-glyph spacing. The size
information in Minion Pro Semibold Condensed Subhead is [180 3 257 139 240]. These values tell an
application that:

• The font's design size is 18 points;

• This font is part of a subfamily of fonts that differ only by the size range which each covers, and which
share the arbitrary identifier number 3;

• ID 257 in the name table is the suggested menu name for this subfamily. In this case, the string at
name ID 257 is Semibold Condensed;

• This font is the recommended choice from sizes greater than 13.9-point up through 24-points.

Application interface: When the user specifies a size, the application checks for a size feature in the active
font. If none is found, the application follows its default behavior. If one is found, the application follows the
specified Offset to retrieve the five values.

• Design size: Applications which offer size-based tracking have a pre-defined curve which they can
apply. By default, this curve should be set to produce no adjustment at the font's design size (first
value in the array, in decipoints).

• Size ranges: If the second value in the size array is non-zero, the font has a recommended size range.
When any such font is selected by the user, the application builds a list of all fonts with this subfamily
value and the same Preferred Family name, and notes the size range in the current font. Applications
may want to cache the subfamily list at this point. If the specified size falls in the current font's range,
the application uses the current font. If not, the application checks the other ranges in the subfamily,
and if the specified size falls in one of them, uses that font. If the specified size is not in any range
present, the font with the range closest to the specified value is used. If the specified size falls exactly
between two ranges, the range with the larger values is used. Since adding or removing fonts from a
subfamily may cause reflow, applications should note which fonts are used for which text.

UI suggestion: This feature should be active by default. Applications may want to present the tracking curve to
the user for adjustments via a GUI. At start-up, and when fonts are added or removed, applications may want
to build a list of fonts with such ranges, and display the filtered subfamily names in their font selection UI, with
each filtered name representing the full set of related sizes. Applications may also present a setting which

ISO/IEC FDIS 14496-22:2006(E)

326 © ISO/IEC 2006 — All rights reserved

allows the user to select non-default sizes (for example, in the case where final output is intended for on-
screen viewing, a smaller optical size will produce better results). In such a case, the font-selection UI should
present the unfiltered names. Applications should notify the user if fonts are removed or added from a
subfamily with size ranges, and query about desired behavior.

Script/language sensitivity: None.

Feature interaction: None.

Tag: 'smcp'

Friendly name: Small Capitals

Function: This feature turns lowercase characters into small capitals. This corresponds to the common SC
font layout. It is generally used for display lines set in Large & small caps, such as titles. Forms related to
small capitals, such as oldstyle figures, may be included.

Example: The user enters text as mixed capitals and lowercase, and gets Large & small cap text.

Recommended implementation: The smcp table maps lowercase glyphs to the corresponding small-cap forms
(GSUB lookup type 1).

Application interface: For GIDs found in the smcp coverage table, the application passes GIDs to the smcp
table, and gets back new GIDs.
NOTE Applications should treat ß (U+00DF) as a pair of s characters, and that the Turkish dotless i maps to the
normal small cap I.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to European scripts (Cyrillic, Greek & Latin), which have capital forms.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. Also see c2sc.

Tag: 'smpl'

Friendly name: Simplified Forms

Function: Replaces 'traditional' Chinese or Japanese forms with the corresponding 'simplified' forms.

Example: The user gets U+53F0 when U+6AAF, U+81FA, or U+98B1 is entered.

Recommended implementation: The smpl table maps each traditional form in a font to a corresponding
simplified form (GSUB lookup type 1).
NOTE More than one traditional form may map to a single simplified form.

Application interface: For GIDs found in the smpl coverage table, the application passes the GIDs to the table
and gets back one new GID for each.
NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

UI suggestion: This feature would be off by default, but could be made the default by a preference setting.

Script/language sensitivity: Applies only to Chinese and Japanese.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 327

Feature interaction: This feature is mutually exclusive with all other features, which should be turned off when
it’s applied, except the palt, vert and vrt2 features, which may be used in addition; trad and tnam are mutally
exclusive, and override the results of smpl.

Tag: 'ss01' - 'ss20'

Friendly name: Stylistic Set 1 - Stylistic Set 20

Function: In addition to, or instead of, stylistic alternatives of individual glyphs (see 'salt' feature), some fonts
may contain sets of stylistic variant glyphs corresponding to portions of the character set, e.g. multiple variants
for lowercase letters in a Latin font. Glyphs in stylistic sets may be designed to harmonise visually, interract in
particular ways, or otherwise work together. Examples of fonts including stylistic sets are Zapfino Linotype and
Adobe's Poetica. Individual features numbered sequentially with the tag name convention 'ss01' 'ss02' 'ss03' .
'ss20' provide a mechanism for glyphs in these sets to be associated via GSUB lookup indexes to default
forms and to each other, and for users to select from available stylistic sets.

Recommended implementation: An ssXX table maps GIDs for default forms to one GIDs for corresponding
stylistic alternatives in each set. Each ssXX feature uses one-to-one (GSUB lookup type 1) substitutions. Font
developers may choose to map only from default forms to variants for each stylistic set, or may choose to map
between all stylistic sets in each feature, depending on intended user experience. For example, feature 'ss03'
might contain lookups mapping variant glyphs from 'ss01' and 'sso2' to corresponding variants in 'ss03', in
addition to mapping from default forms.

Application interface: The application is responsible for counting and enumerating the number of features in
the font with tag names of the format 'ss01' to 'ss20', and for presenting the user with an appropriate selection
mechanism. For GIDs found in the ssXX coverage table, the application passes the GIDs to the ssXX table
and gets back one or more new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override. After an ssXX feature has been applied, the user may wish to apply glyph-specific
features, e.g. 'salt', to individual glyphs in the resulting layout; font developers are responsible for ordering
substitution lookups to obtain desired user experience.

Tag: 'subs'

Friendly name: Subscript

Function: The "subs" feature may replace a default glyph with a subscript glyph, or it may combine a glyph
substitution with positioning adjustments for proper placement.

Recommended implementation: First, a single or contextual substitution lookup implements the subscript
glyph (GSUB lookup type 1). Then, if the glyph needs repositioning, an application may apply a single
adjustment, pair adjustment, or contextual adjustment positioning lookup to modify its position.

Application interface: For GIDs found in the subs coverage table, the application passes a GID to the feature
and gets back a new GID. This is a change of semantic value. Besides the original character codes, the
application should store the code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

ISO/IEC FDIS 14496-22:2006(E)

328 © ISO/IEC 2006 — All rights reserved

Tag: 'sups'

Friendly name: Superscript

Function: Replaces lining or oldstyle figures with superior figures (primarily for footnote indication), and
replaces lowercase letters with superior letters (primarily for abbreviated French titles).

Example: The application can use this feature to automatically access the superior figures (more legible than
scaled figures) for footnotes, or the user can apply it to Mssr to get the classic form.

Recommended implementation: The sups table maps figures and lowercase letters to the corresponding
superior forms (GSUB lookup type 1).

Application interface: For GIDs found in the sups coverage table, the application passes a GID to the feature
and gets back a new GID.
NOTE This can include a change of semantic value. Besides the original character codes, the application should
store the code for the new character.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Can apply to nearly any script.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'swsh'

Friendly name: Swash

Function: This feature replaces default character glyphs with corresponding swash glyphs. It should be noted
that there may be more than one swash alternate for a given character.

Example: The user inputs the ampersand character when setting text with Poetica with this feature active, and
is presented with a choice of the 63 ampersand forms in that face.

Recommended implementation: The swsh table maps GIDs for default forms to those for one or more
corresponding swash forms. While many of these substitutions are one-to-one (GSUB lookup type 1), others
require a selection from a set (GSUB lookup type 3). The manufacturer may choose to build two tables (one
for each lookup type) or only one which uses lookup type 3 for all substitutions. If several styles of swash are
present across the font, the set of forms for each character should be ordered consistently.

Application interface: For GIDs found in the swsh coverage table, the application passes the GIDs to the swsh
table and gets back one or more new GIDs. If more than one GID is returned, the application must provide a
means for the user to select the one desired.

UI suggestion: This feature should be inactive by default. When more than one GID is returned, an application
could display the forms sequentially in context, or present a palette showing all the forms at once, or give the
user a choice between these approaches. The application may assume that the first glyph in a set is the
preferred form, so the font developer should order them accordingly.

Script/language sensitivity: Does not apply to ideographic scripts.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'titl'

Friendly name: Titling

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 329

Function: This feature replaces the default glyphs with corresponding forms designed specifically for titling.
These may be all-capital and/or larger on the body, and adjusted for viewing at larger sizes.

Example: The user applies this feature in Adobe Garamond to get the titling caps.

Recommended implementation: The titl table maps default forms to corresponding titling forms (GSUB lookup
type 1).

Application interface: For GIDs found in the titl coverage table, the application passes the GIDs to the titl table
and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: None.

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

Tag: 'tjmo'

Friendly name: Trailing Jamo Forms

Function: Substitutes the trailing jamo form of a cluster.

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of trailing class jamos are found, their combined trailing jamo form is
substituted.

Recommended implementation: The tjmo table maps the sequence required to convert a series of jamos into
its trailing jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the tjmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the trailing jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'tnam'

Friendly name: Traditional Name Forms

Function: Replaces 'simplified' Japanese kanji forms with the corresponding 'traditional' forms. This is
equivalent to the Traditional Forms feature, but explicitly limited to the traditional forms considered proper for
use in personal names (as many as 205 glyphs in some fonts).

Example: The user inputs U+4E9C and gets U+4E9E.

Recommended implementation: The tnam table maps simplified forms in a font to corresponding traditional
forms which can be used in personal names (GSUB lookup type 1). The application stores a record of any
simplified forms which resulted from substitutions (the smpl feature); for such forms, applying the tnam feature
undoes the previous substitution.

Application interface: For GIDs found in the tnam coverage table, the application passes the GIDs to the table
and gets back new GIDs.
NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

ISO/IEC FDIS 14496-22:2006(E)

330 © ISO/IEC 2006 — All rights reserved

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to Japanese.

Feature interaction: May include some characters affected by the Proportional Alternate Widths feature (palt);
trad and tnam are mutually exclusive, and override the results of smpl.

Tag: 'tnum'

Friendly name: Tabular Figures

Function: Replaces figure glyphs set on proportional widths with corresponding glyphs set on uniform (tabular)
widths. Tabular widths will generally be the default, but this cannot be safely assumed. Of course this feature
would not be present in monospaced designs.

Example: The user may apply this feature to get oldstyle figures to align vertically in a column.

Recommended implementation: In order to simplify associated kerning and get the best glyph design for a
given width, this feature should use new glyphs for the figures, rather than only adjusting the fit of the
proportional glyphs (although some may be simple copies); i.e. not a GPOS feature. The tnum table maps
proportional versions of lining &/or oldstyle figures to corresponding tabular glyphs (GSUB lookup type 1).

Application interface: For GIDs found in the tnum coverage table, the application passes GIDs to the tnum
table and gets back new GIDs.

UI suggestion: This feature should be off by default. The application may want to query the user about this
feature when the user changes figure style (onum or lnum).

Script/language sensitivity: None.

Feature interaction: This feature overrides the results of the Proportional Figures feature (pnum).

Tag: 'trad'

Friendly name: Traditional Forms

Function: Replaces 'simplified' Chinese hanzi or Japanese kanji forms with the corresponding 'traditional'
forms.

Example: The user inputs U+53F0 and is offered a choice of U+6AAF, U+81FA, or U+98B1.

Recommended implementation: The trad table maps each simplified form in a font to one or more traditional
forms. While many of these substitutions are one-to-one (GSUB lookup type 1), others require a selection
from a set (GSUB lookup type 3). The manufacturer may choose to build two tables (one for each lookup type)
or only one which uses lookup type 3 for all substitutions. As in any one-from-many substitution, alternates
present in more than one face should be ordered consistently across a family, so that those alternates can
work correctly when switching between family members.

Application interface: For GIDs found in the trad coverage table, the application passes the GIDs to the table
and gets back one or more new GIDs. If more than one GID is returned, the application must provide a means
for the user to select the one desired. The application stores a record of any simplified forms which resulted
from substitutions (the smpl feature); for such forms, applying the trad feature undoes the previous
substitution.
NOTE This is a change of character code. Besides the original character code, the application should store the code
for the new character.

UI suggestion: This feature should be inactive by default. If there's no record of a conversion from traditional
to simplified, the user must be offered a set of possibilities from which to select. The application may note the
user's choice, and offer it as a default the next time the source simplified character is encountered. In the

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 331

absence of such prior information, the application may assume that the first glyph in a set is the preferred form,
so the font developer should order them accordingly.

Script/language sensitivity: Applies only to Chinese and Japanese.

Feature interaction: May include some characters affected by the Proportional Alternate Widths feature (palt);
trad and tnam are mutually exclusive, and override the results of smpl.

Tag: 'twid'

Friendly name: Third Widths

Function: Replaces glyphs on other widths with glyphs set on widths of one third of an em. The characters
involved are normally figures and some forms of punctuation.

Example: The user may apply twid to place a three-digit figure in a single slot in a column of vertical text.

Recommended implementation: The font may contain alternate glyphs designed to be set on third-em widths
(GSUB lookup type 1), or it may specify alternate metrics for the original glyphs (GPOS lookup type 1) which
adjust their spacing to fit in third-em widths.

Application interface: For GIDs found in the twid coverage table, the application passes the GIDs to the table
and gets back either new GIDs or positional adjustments (XPlacement and XAdvance).

UI suggestion: This feature would normally be off by default.

Script/language sensitivity: Generally used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-width features (e.g. fwid, halt, hwid
and qwid), which should be turned off when it's applied. It deactivates the kern feature.

Tag: 'unic'

Friendly name: Unicase

Function: This feature maps upper- and lowercase letters to a mixed set of lowercase and small capital forms,
resulting in a single case alphabet (for an example of unicase, see the Emigre type family Filosofia). The
letters substituted may vary from font to font, as appropriate to the design. If aligning to the x-height, smallcap
glyphs may be substituted, or specially designed unicase forms might be used. Substitutions might also
include specially designed figures.

Example: The user enters text as uppercase, lowercase or mixed case, and gets unicase text.

Recommended implementation: The unic table maps some uppercase and lowercase glyphs to corresponding
unicase forms (GSUB lookup type 1).

Application interface: For GIDs found in the unic coverage table, the application passes GIDs to the unic table,
and gets back new GIDs.

UI suggestion: This feature should be off by default.

Script/language sensitivity: Applies only to scripts with both upper- and lowercase forms (e.g. Latin, Cyrillic,
Greek).

Feature interaction: This feature may be used in combination with other substitution (GSUB) features, whose
results it may override.

ISO/IEC FDIS 14496-22:2006(E)

332 © ISO/IEC 2006 — All rights reserved

Tag: 'valt'

Friendly name: Alternate Vertical Metrics

Function: Repositions glyphs to visually center them within full-height metrics, for use in vertical setting.
Typically applies to full-width Latin glyphs, which are aligned on a common horizontal baseline and not rotated
when set vertically in CJKV fonts.

Example: Applying this feature would shift a Roman h down, or y up, from their default full-width positions.

Recommended implementation: The font specifies alternate metrics for the original glyphs (GPOS lookup type
1).

Application interface: For GIDs found in the valt coverage table, the application passes the GIDs to the table
and gets back positional adjustments (YPlacement).

UI suggestion: This feature should be active by default in vertical-setting contexts.

Script/language sensitivity: Applies only to scripts with vertical writing modes.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. vhal and vpal),
which should be turned off when it's applied. It deactivates the kern feature.

Tag: "vatu"

Friendly name: Vattu Variants

Function: Substitutes ligatures for conjuncts made up of base consonants with consonants that have vattu
forms.

Example: In the Devanagari (Indic) script, the consonant Ra takes a vattu form, when it is not the syllable
initial consonant in a conjunct. This form ligates with the base consonant as well as half forms of consonants.

Recommended implementation: The vatu table maps consonant and vattu form combinations to their
respective ligatures (GSUB lookup type 4).

Application interface: For substitutions defined in the vatu table, the application passes the sequence of GIDs
to the table, and gets back the GID for the vattu variant ligature.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required in Indic scripts. eg: Devanagari.

Feature interaction: This feature overrides the results of all other features.

Tag: 'vert'

Friendly name: Vertical Alternates

Function: Replaces default forms with variants adjusted for vertical writing when in vertical writing mode. While
most CJKV glyphs remain vertical when set in vertical writing mode, some take a different form (usually
rotated and repositioned) for this purpose. Glyphs covered by this feature correspond to the set normally
rotated in low-end DTP applications.

Example: In vertical writing mode, the opening parenthesis (U+FF08) is replaced by the rotated form
(U+FE35).

Recommended implementation: The font includes rotated versions of the glyphs covered by this feature. The
vert table maps the standard forms to the corresponding rotated forms (GSUB lookup type 1). This feature
should be the last substitution in the font, and take input from other features.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 333

Application interface: For GIDs found in the vert coverage table, the application passes GIDs to the feature,
and gets back new GIDs. See the vrt2 feature description for more details.

UI suggestion: This feature should be active by default when vertical writing mode is on if the vrt2 feature is
not present. See the vrt2 feature description for more details, and a discussion of vertical writing in OFF.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

Feature interaction: This is a subset of the vrt2 feature; vrt2 is preferred. May be used in addition to any other
feature.

Tag: 'vhal'

Friendly name: Alternate Vertical Half Metrics

Function: Respaces glyphs designed to be set on full-em heights, fitting them onto half-em heights. This
differs from valt in that it does not substitute new glyphs.

Example: The user may invoke this feature in a CJKV font to get better fit for punctuation or symbol glyphs
without disrupting the monospaced alignment.

Recommended implementation: The font specifies alternate metrics for the full-height glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the vhal coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used only in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. valt and vpal),
which should be turned off when it’s applied. It deactivates the kern feature. See also halt.

Tag: "vjmo"

Friendly name: Vowel Jamo Forms

Function: Substitutes the vowel jamo form of a cluster.

Example: In Hangul script, the jamo cluster is composed of three parts (leading consonant, vowel, and trailing
consonant). When a sequence of vowel class jamos are found, their combined vowel jamo form is substituted.

Recommended implementation: The vjmo table maps the sequence required to convert a series of jamos into
its vowel jamo form (GSUB lookup type 4).

Application interface: For substitutions defined in the vjmo table, the application passes the sequence of GIDs
to the feature, and gets back the GID for the vowel jamo form.

UI suggestion: This feature should be on by default.

Script/language sensitivity: Required for Hangul script when Ancient Hangul writing system is supported.

Feature interaction: This feature overrides the results of all other features.

Tag: 'vkna'

Friendly name: Vertical Kana Alternates

ISO/IEC FDIS 14496-22:2006(E)

334 © ISO/IEC 2006 — All rights reserved

Function: Replaces standard kana with forms that have been specially designed for only vertical writing. This
is a typographic optimization for improved fit and more even color. Also see hkna.

Example: Standard full-width kana (hiragana and katakana) are replaced by forms that are designed for
vertical use.

Recommended implementation: The font includes a set of specially-designed glyphs, listed in the vkna
coverage table. The vkna feature maps the standard full-width forms to the corresponding special vertical
forms (GSUB lookup type 1).

Application interface: For GIDs found in the vkna coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion: This feature would be off by default.

Script/language sensitivity: Applies only to fonts that support kana (hiragana and katakana).

Feature interaction: Since this feature is only for vertical use, features applying to horizontal behaviors (e.g.
kern) do not apply.

Tag: 'vkrn'

Friendly name: Vertical Kerning

Function: Adjusts amount of space between glyphs, generally to provide optically consistent spacing between
glyphs. Although a well-designed typeface has consistent inter-glyph spacing overall, some glyph
combinations require adjustment for improved legibility. Besides standard adjustment in the vertical direction,
this feature can supply size-dependent kerning data via device tables, "cross-stream" kerning in the X text
direction, and adjustment of glyph placement independent of the advance adjustment.
NOTE This feature may apply to runs of more than two glyphs, and would not be used in monospaced fonts. This
feature applies only to text set vertically.

Example: When the katakana character U+30B9 or U+30D8 is followed by U+30C8 in a vertical setting,
U+30C8 is shifted up to fit more evenly.

Recommended implementation: The font stores a set of adjustments for pairs of glyphs (GPOS lookup type 2
or 8). These may be stored as one or more tables matching left and right classes, &/or as individual pairs.
Additional adjustments may be provided for larger sets of glyphs (e.g. triplets, quadruplets, etc.) to overwrite
the results of pair kerns in particular combinations.

Application interface: The application passes a sequence of GIDs to the kern table, and gets back adjusted
positions (XPlacement, XAdvance, YPlacement and YAdvance) for those GIDs. When using the type 2 lookup
on a run of glyphs, it's critical to remember to not consume the last glyph, but to keep it available as the first
glyph in a subsequent run (this is a departure from normal lookup behavior).

UI suggestion: This feature should be active by default for vertical text setting. Applications may wish to allow
users to add further manually-specified adjustments to suit specific needs and tastes.

Script/language sensitivity: None

Feature interaction: If 'vkrn' is activated, 'vpal' must also be activated if it exists. (If 'vpal' is activated, there is
no requirement that 'vkrn' must also be activated.) May be used in addition to any other feature except those
which result in fixed (uniform) advance heights.

Tag: 'vpal'

Friendly name: Proportional Alternate Vertical Metrics

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 335

Function: Respaces glyphs designed to be set on full-em heights, fitting them onto individual (more or less
proportional) vertical heights. This differs from valt in that it does not substitute new glyphs (GPOS, not GSUB
feature). The user may prefer the monospaced form, or may simply want to ensure that the glyph is well-fit.

Example: The user may invoke this feature in a Japanese font to get Latin, Kanji, Kana or Symbol glyphs with
the full-height design but individual metrics.

Recommended implementation: The font specifies alternate heights for the full-height glyphs (GPOS lookup
type 1).

Application interface: For GIDs found in the vpal coverage table, the application passes the GIDs to the table
and gets back positional adjustments (XPlacement, XAdvance, YPlacement and YAdvance).

UI suggestion: This feature would be off by default.

Script/language sensitivity: Used mostly in CJKV fonts.

Feature interaction: This feature is mutually exclusive with all other glyph-height features (e.g. valt and vhal),
which should be turned off when it's applied. If vpal is activated, there is no requirement that vkrn must also be
activated. If vkrn is activated then vpal must also be activated if it exists.

Tag: 'vrt2'

Friendly name: Vertical Alternates and Rotation

Function: Replaces some fixed-width (half-, third- or quarter-width) or proportional-width glyphs (mostly Latin
or katakana) with forms suitable for vertical writing (that is, rotated 90 degrees clockwise).
NOTE These are a superset of the glyphs covered in the vert table.

ATM/NT 4.1 and the Windows 2000 OTF driver impose the following requirements for an OFF font with CFF
outlines to be used for vertical writing: the vrt2 feature must be present in the GSUB table, it must comprises a
single lookup of LookupType 1 and LookupFlag 0, and the lookup must have a single subtable. The
predecessor feature, vert, is ignored.

A rotated glyph must be designed such that its top side bearing and vertical advance as recorded in the
Vertical Metrics ('vmtx') table are identical to the left side bearing and horizontal advance, respectively, of the
corresponding upright glyph as recorded in the Horizontal Metrics ('hmtx') table. (The horizontal advance of
the rotated glyph may be set to any value, since the glyph is intended only for vertical writing use. The vendor
may however set it to head.unitsPerEm, to prevent overlap during font proofing tests, for example.)

Thus, proportional-width glyphs with rotated forms in the vrt2 feature will appear identically spaced in both
vertical and horizontal writing. In order for kerning to produce identical results as well, developers must ensure
that the Vertical Kerning (vkrn) feature record kern values between the rotated glyphs that are the same as
kern values between their corresponding upright glyphs in the Kerning (kern) feature.

Example: Proportional- or half-width Latin and half-width katakana characters are rotated 90 degrees
clockwise for vertical writing.

Recommended implementation: The font includes rotated versions of the glyphs covered by this feature. The
vrt2 table maps the standard (horizontal) forms to the corresponding vertical (rotated) forms (GSUB lookup
type 1). This feature should be the last substitution in the font, and take input from other features.

Application interface: For GIDs found in the vrt2 coverage table, the application passes GIDs to the feature,
and gets back new GIDs.

UI suggestion: This feature should be active by default when vertical writing mode is on, although the user
must be able to override it.

Script/language sensitivity: Applies only to scripts with vertical writing capability.

ISO/IEC FDIS 14496-22:2006(E)

336 © ISO/IEC 2006 — All rights reserved

Feature interaction: Overrides the vert (Vertical Writing) feature, which is a subset of this one. May be used in
addition to any other feature.

Tag: 'zero'

Friendly name: Slashed Zero

Function: Some fonts contain both a default form of zero, and an alternative form which uses a diagonal slash
through the counter. Especially in condensed designs, it can be difficult to distinguish between 0 and O (zero
and capital O) in any situation where capitals and lining figures may be arbitrarily mixed. This feature allows
the user to change from the default 0 to a slashed form.

Example: When setting labels, the user applies this feature to get the slashed 0.

Recommended implementation: The zero table maps the GIDs for the lining forms of zero to corresponding
slashed forms (GSUB lookup type 1).

Application interface: For GIDs in the zero coverage table, the application passes a GID to the zero table and
gets back a new GID.

UI suggestion: Optimally, the application would store this as a preference setting, and the user could use the
feature to toggle back and forth between the two forms. Most applications will want the default setting to
disable this feature.

Script/language sensitivity: Does not apply to scripts which use forms other than 0 for zero.

Feature interaction: Applies only to lining figures, so is inactivated by oldstyle figure features (e.g. onum).

5.4.4 Baseline Tags

This clause defines the standard OFF Layout baseline tags. A registered baseline tag has a specific meaning
when used in the horizontal writing direction (used in the 'BASE' table's HorizAxis table), vertical writing
direction (used in the 'BASE' table's VertAxis table), or both, and conveys information to font users about a
baseline's use. For example, the "romn" baseline tag is commonly used to identify the baseline to layout Latin
text in the horizontal, vertical, or both directions for Latin text layout.

This version of the Tag Registry identifies the baselines . All baseline tags are 4-byte character strings
composed of a limited set of ASCII characters in the 0x20-0x7E range. Baseline tags consist of four lowercase
letters.

Baseline Tag Baseline for HorizAxis Baseline for VertAxis

"hang" The hanging baseline. This
is the horizontal line from
which syllables seem to
hang in Tibetan script.

The hanging baseline, (which now appears vertical) for Tibetan
characters rotated 90 degrees clockwise, for vertical writing mode.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 337

"icfb" Ideographic character face
bottom edge baseline.
(See Ideographic Character
Face below for usage.)

Ideographic character face left edge baseline.
(See clause Ideographic Character Face below for usage.)

"icft" Ideographic character face
top edge baseline.
(See Ideographic Character
Face below for usage.)

Ideographic character face right edge baseline.
(See clause Ideographic Character Face below for usage.)

"ideo" Ideographic em-box bottom
edge baseline.
(See clause Ideographic
Em-Box below for usage.)

Ideographic em-box left edge baseline. If this tag is present in the
VertAxis, the value must be set to 0.
(See clause Ideographic Em-Box below for usage.)

"idtp" Ideographic em-box top
edge baseline. (See
Ideographic Em-Box below
for usage.)

Ideographic em-box right edge baseline. If this tag is present in the
VertAxis, the value is strongly recommended to be set to
head.unitsPerEm. (See clause Ideographic Em-Box below for usage.)

"math" The baseline about which
mathematical characters
are centered.

The baseline about which mathematical characters, when rotated 90
degrees clockwise for vertical writing mode, are centered.

"romn" The baseline used by
simple alphabetic scripts
such as Latin, Cyrillic and
Greek.

The alphabetic baseline for characters rotated 90 degrees clockwise for
vertical writing mode. (This would not apply to alphabetic characters that
remain upright in vertical writing mode, since these characters are not
rotated.)

Ideographic Em-Box

[The notation <Axis>.<Baseline Tag> is used in the following description to mean the baseline tag as defined
in the specified axis. For example, HorizAxis.ideo means the ideo baseline tag as defined in the HorizAxis of
the BASE table. See above for a list of registered baseline tags.]

A font's ideographic em-box is the rectangle that defines a standard escapement around the full-width
ideographic glyphs of the font, for both the horizontal and vertical writing directions. It is usually a square, but
may be non-square as in the case of fonts used in Japanese newspaper layout that have a vertically
condensed design.

The left, right, top and bottom edges of the ideographic em-box are to be determined as follows:
ideoEmboxLeft = 0

ISO/IEC FDIS 14496-22:2006(E)

338 © ISO/IEC 2006 — All rights reserved

If HorizAxis.ideo defined:
ideoEmboxBottom = HorizAxis.ideo

If HorizAxis.idtp defined:
 ideoEmboxTop = HorizAxis.idtp

 Else:

 ideoEmboxTop = HorizAxis.ideo + head.unitsPerEm

 If VertAxis.idtp defined:
 ideoEmboxRight = VertAxis.idtp

 Else:

 ideoEmboxRight = head.unitsPerEm

 If VertAxis.ideo defined and non-zero:
 Warning: Bad VertAxis.ideo value

Else If this is a CJK font:
 ideoEmboxBottom = OS/2.sTypoDescender
 ideoEmboxTop = OS/2.sTypoAscender
 ideoEmboxRight = head.unitsPerEm

Else:

 ideoEmbox cannot be determined for this font

Determining whether a font is CJK (Chinese, Japanese, or Korean) or not, as in the second-last "Else" clause
above, can be done by checking the CJK-related bits of the OS/2.ulUnicodeRange fields.
NOTE Font designers can specify a HorizAxis.ideo baseline in their non-CJK fonts; this can be used by applications
when aligning the font with an ideographic font used on the same line of text, when the user has specified ideographic em-
box alignment.

The ideographic em-box center baseline is defined as halfway between the ideographic em-box top and
bottom baselines in the horizontal axis, and halfway between the ideographic em-box left and right baselines
in the vertical axis. These center baselines are defined in whole character units. The division used in the
calculation must round to the character unit nearest 0 if needed. Thus, for maximal precision of center
baseline placement, vendors should ensure that opposite edges of the ideographic em-box box are an even
number of character units apart.

Example:

The values of the ideographic baseline tags for the Kozuka Mincho font family (designed on a 1000-unit em)
are:

HorizAxis.ideo = -120; HorizAxis.idtp = 880.
Since this describes a square ideographic em-box, it is sufficient to record only the following:
HorizAxis.ideo = -120.
If HorizAxis.ideo is not present, then the following will be used for the ideographic em-box bottom
and top, since this is a CJK font:
OS/2.sTypoDescender = -120; OS/2.sTypoAscender = 880.

Compatibility notes:

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 339

a. Most applications expect the width of full-width ideographs in a CJK font to be exactly one em, thus it
is strongly recommended that VertAxis.idtp, if present, be set to head.unitsPerEm. (The idtp
baseline tag was introduced in OFF 1.3.)

b. While the OFF specification allows for CJK fonts' OS/2.sTypoDescender and OS/2.sTypoAscender
fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp in the 'BASE' table,
CJK font developers should be aware that existing applications may not read the 'BASE' table at all
but simply use the OS/2.sTypoDescender and OS/2.sTypoAscender fields to describe the bottom and
top edges of the ideographic em-box. If developers want their fonts to work correctly with such
applications, they should ensure that any ideographic em-box values in the 'BASE' table of their CJK
fonts describe the same bottom and top edges as the OS/2.sTypoDescender and
OS/2.sTypoAscender fields.

c. Applications on platforms other than Windows that don't parse the 'OS/2' table won't have access to
the OS/2.sTypoDescender and OS/2.sTypoAscender fields Thus, CJK fonts will typically have the
same descender value recorded in hhea.Descender, OS/2.sTypoDescender, and HorizAxis.ideo (if
present), and the same Ascender value recorded in hhea.Ascender, OS/2.sTypoAscender, and
HorizAxis.idtp (if present).

See subclause 6 "OFF CJK Font Guidelines" for more information about constructing CJK fonts.

Ideographic Character Face

[The notation <Axis>.<Baseline Tag> is used in the following description to mean the baseline tag as
defined in the specified axis. For example, HorizAxis.icfb means the icfb baseline tag as defined in the
HorizAxis of the BASE table. See above for a list of registered baseline tags.]

The ideographic character face (ICF), also known as the average character face (ACF), specifies the
approximate bounding box of the full-width ideographic and kana glyphs in a CJK font. (This is different from
the FontBBox, as described in the PostScript programming language, which is the bounding box of all glyphs
in the font.) In Japanese, the term for ICF is heikin jizura.

It is typically expressed as a percentage that represents the ratio of the length of an ICF box edge to the
length of an ideographic em-box edge, and is conceptualized as a square centered within the ideographic em-
box. However, in OFF, the ICF box's left, bottom, right, and top edges are specified as the VertAxis.icfb,
HorizAxis.icfb, VertAxis.icft, and HorizAxis.icft baselines, respectively, thus giving font designers the
flexibility to specify a non-square and/or non-centered ICF box.

Font designers should set the value of the ICF box edges based on how tight or loose they want the font to
appear when text is set with no tracking or kerning (beta gumi in Japanese). Therefore, the left-over boundary
of the ideographic em-box around the ICF box is the default escapement of the font.

Applications can use the ICF box as an alignment tool, to ensure that glyphs touch the edges of the text frame
and page objects are visually aligned to text edges. It is also useful for aligning glyphs of different sizes on the
same line. In Japanese traditional paper-based workflow, the ICF box was often used for these purposes. It
provides optically aligned results that are superior to using the ideographic em-box.

HorizAxis.icfb is the mininum piece of information required to define the ICF, in a CJK font. First, the
ideographic em-box dimensions must be calculated as in the clause "Ideographic Em-Box" above. The ICF
edges are then calculated in the following order:

If HorizAxis.icfb defined:
 icfBottom = HorizAxis.icfb
 margin = HorizAxis.icfb – ideoEmboxBottom
If HorizAxis.icft defined:
 icfTop = HorizAxis.icft
Else:
 icfTop = ideoEmboxTop - margin
If VertAxis.icfb defined:
 icfLeft = VertAxis.icfb
Else:

ISO/IEC FDIS 14496-22:2006(E)

340 © ISO/IEC 2006 — All rights reserved

 icfLeft = margin
If VertAxis.icft defined:
 icfRight = VertAxis.icft
Else:
 icfRight = ideoEmBoxRight - icfLeft
Else:
ICF cannot be determined for this font

For the last case above, i.e. fonts that don't have ICF information in their 'BASE' table, an application may
choose to apply a heuristic such as calculating the bounding box of some or all of the ideographic and kana
glyphs, and then averaging its margin with the ideographic em-box.

The ICF center baseline is defined as halfway between the ICF top and bottom baselines in the horizontal axis,
and halfway between the ICF left and right baselines in the vertical axis. These center baselines are defined in
whole character units. The division used in the calculation must round to the character unit nearest 0 if needed.
Thus, for maximal precision of center baseline placement, vendors should ensure that opposite edges of the
ICF box are an even number of character units apart.

Example:

The values of the ICF baselines for the Extra Light and Heavy weights of the Kozuka Mincho font family
(designed on a 1000-unit em, with ideographic em-box as given in the example in the previous clause) are:

Kozuka Mincho Extra Light:
VertAxis.icfb = 41; HorizAxis.icfb = -79;
VertAxis.icft = 959; HorizAxis.icft = 839.
Since this describes a square ICF centered in a square ideographic em-box, it is sufficient to record
only the following:
HorizAxis.icfb = -79.

Kozuka Mincho Heavy:
VertAxis.icfb = 26; HorizAxis.icfb = -94;
VertAxis.icft = 974; HorizAxis.icft = 854.
It is sufficient to record only:
HorizAxis.icfb = -94.

It is strongly recommended that each of the edges of the ICF box be equidistant from the corresponding edge
of the ideographic em-box. Following this will result in more predictable results in applications that use these
values. That is, for fonts based on a square ideographic em-box, the ICF box should be a centered square.

See subclause 6 "OFF CJK Font Guidelines" for more information about constructing CJK fonts.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 341

6 Recommendations for OFF Fonts

This clause outlines recommendations for creating OFF fonts.

Byte Ordering

All OFF fonts use Motorola-style byte ordering (Big Endian).

'sfnt' Version

OFF fonts that contain TrueType outlines should use the value of 1.0 for the sfnt version. OFF fonts containing
CFF data should use the tag 'OTTO' as the sfnt version number.

Mixing Outline Formats

It is not recommended to mix outline formats within a single font. Choose the format that meets your feature requirements.

Filenames

OFF fonts may have the extension .OTF, .TTF, or .TTC, depending on the type of outlines in the font and the
presence of OFF layout tables.

• Fonts with CFF data always have an .OTF extension.

• Fonts containing TrueType outlines that have OFF layout tables should use the .OTF extension when
backward compatibility is not an issue. Fonts without OFF layout tables, or fonts that have backward
compatibility issues should use the .TTF extension. TrueType Collection fonts should have a .TTC
extension whether or not the fonts have OFF layout tables present.

Table Alignment and Length

All tables should be aligned to begin at Offsets which are multiples of four bytes. While this is not required by
the TrueType rasterizer, it does prevent ambiguous checksum calculations and greatly speeds table access
on some processors.

All tables should be recorded in the table directory with their actual length. To ensure that checksums are
calculated correctly, it is suggested that tables begin on LONG word boundries. Any extra space after a table
(and before the next LONG word boundry) should be padded with zeros.

First Four Glyphs in Fonts

TrueType outline fonts should have the following four glyphs at the glyph ID indicated.

Glyph ID Glyph name Unicode value

0 .notdef undefined

1 .null U+0000

2 CR U+000D

3 Space U+0020

ISO/IEC FDIS 14496-22:2006(E)

342 © ISO/IEC 2006 — All rights reserved

Shape of .notdef glyph

The .notdef glyph is very important for providing the user feedback that a glyph is not found in the font. This
glyph should not be left without an outline as the user will only see what looks like a space if a glyph is missing
and not be aware of the active font's limitation.

It is recommended that the shape of the .notdef glyph be either an empty rectangle, a rectangle with a
question mark inside of it, or a rectangle with an "X". Creative shapes, like swirls or other symbols, may not be
recognized by users as indicating that a glyph is missing from the font and is not being displayed at that
location.

'BASE' Table

The 'BASE' table allows for different scripts in the font to specify different values for the same baseline tag.
This situation could arise when a developer makes a Unicode font, for example, by combining glyphs from
fonts that use different baseline systems.

However, glyphs from different scripts in this font may not appear correctly aligned relative to each other when
used with applications that either don't support the 'BASE' table or that support it but assume that a particular
baseline will not vary across scripts. Furthermore, it is not always possible to determine the script of every
glyph in the font, some "weakly-scripted" characters such as punctuation may be used in several scripts, and
some glyphs such as ornaments may not have a script at all.

Thus, it is strongly recommended that developers construct their fonts so that all scripts in the 'BASE' table
record the same value for a particular baseline if they want their fonts to work as expected in the above
situations.

'cmap' Table

When building a Unicode font for Windows, the platform ID should be 3 and the encoding ID should be 1 (this
subtable must use cmap format 4). When building a symbol font for Windows, the platform ID should be 3 and
the encoding ID should be 0.

When building a font to support surrogate characters i.e. the UCS-4 (4 byte) form of ISO/IEC 10646 (ISO/IEC
10646 UCS-4 contains 2^31 code positions and the Unicode transformation formats UTF-8 and UTF-16
access a subset of these code positions using surrogate characters), use platform ID 3, encoding ID 10 and
format 12. Depending on support installed and the content of text being displayed, Windows 2000 may use
either the format 4 or format 12 cmap. Therefore the first 64k codepoint to glyph mappings must be identical
for any font containing both cmap format 4 and format 12. Please note that the content of format 12 subtable,
needs to be a super set of the content in the format 4 subtable. The format 4 subtable needs to be included,
for backward compatibility needs.

The number of glyphs that may be included in one font is limited to 64k.

Remember that, despite references to 'first' and 'second' subtables, the subtables must be stored in sorted
order by platform and encoding ID.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 343

'cvt' Table

Should be defined only if required by font instructions.

'fpgm' Table

Should be defined only if required by TrueType font instructions.

'glyf' Table

The 'glyf' table contains TrueType outline data, and can be optimized by applying Microtype Express
compression defined in ISO/IEC 14496-18.
NOTE t is recommended that developers perform this optimization prior to finalizing and adding a digital signature to
the font. This is necessary for the creator's signature to remain valid in embedded OFF fonts.

'hdmx' Table

This table improves the performance of OFF fonts with TrueType outlines. This table is not necessary at all
unless instructions are used to control the "phantom points," and should be omitted if bits 2 and 4 of the flags
field in the 'head' table are zero. (See the 'head' table description.) It is recommended that this table be
included for fonts with one or more non-linearly scaled glyphs (i.e., bit 2 or 4 of the 'head' table flags field are
set).

Device records should be defined for all sizes from 8 through 14 point, and even point sizes from 16 through
24 point. However, the table requires pixel-per-em sizes, which depend on the horizontal resolution of the
output device. The records in 'hdmx' should cover both 96 dpi devices (CGA, EGA, VGA) and 300 dpi devices
(laser and ink jet printers).

Thus, 'hdmx' should contain entries for the following pixel sizes (PPEM): 11, 12, 13, 15, 16, 17, 19, 21, 24, 27,
29, 32, 33, 37, 42, 46, 50, 54, 58, 67, 75, 83, 92, 100. These values have been rounded to the nearest pixel.
For instance, 12 points at 300 dpi would measure 37.5 pixels, but this is rounded down to 37 for this list.

This will add approximately 9,600 bytes to the font file. However, there will be a significant improvement in
speed when a client requests advance widths covered by these device records.

If the font includes an 'LTSH' table, the hdmx values are not needed above the linearity threshold.

'head' Table

Although historical usage of the fontRevision value is varied, the recommended use of the field is to set it as
a Fixed 16.16 value, and to report it rounded and zero-padded to three fractional decimal places. Examples:
Decimal 1.5 is set as 0x00018000 and is reported as "1.500"; decimal 1.001 is set as 0x00010041 and is
reported as "1.001". All data required. If the font has been compressed with Microtype Express compression
defined in ISO/IEC 14496-18 this must be indicated in the flags field of the 'head' table.

'hhea' Table

All data required. It is suggested that monospaced fonts set numberOfHMetrics to three (see hmtx).

'hmtx' Table

All data required. It is suggested that monospaced fonts have three entries in the numberOfHMetrics field.
OFF fonts that include CFF data must set numberOfHMetrics equal to the number of glyphs in the font and
therefore cannot use the "repeat last width" optimization normally available within the 'hmtx' table.

ISO/IEC FDIS 14496-22:2006(E)

344 © ISO/IEC 2006 — All rights reserved

'kern' Table

Should contain a single kerning pair subtable (format 0). Windows will not support format 2 (two-dimensional
array of kern values by class); nor multiple tables (only the first format 0 table found will be used) nor
coverage bits 0 through 4 (i.e. assumes horizontal data, kerning values, no cross stream, and override). OFF
fonts containing CFF data do not support the 'kern' table and should therefore specify kerning data using the
'GPOS' table (LookupType=2).

'loca' Table

All data required for fonts with TrueType outlines. We recommend that local Offsets should be word-aligned,
in both the short and long formats of this table.

The actual ordering of the glyphs in the font can be optimized based on expected utilization, with the most
frequently used glyphs appearing at the beginning of the font file. Additionally, glyphs that are often used
together should be grouped together in the file. The will help to minimize the amount of swapping required
when the font is loaded into memory.

'LTSH' Table

This table improves the performance of OFF fonts with TrueType outlines. The table should be used if bit 2 or
4 of flags in 'head' is set.

'maxp' Table

All data required for a font with TrueType outlines. Fonts with CFF data must only fill the numGlyphs field.

'name' Table

Platform and encoding ID's in the name table should be consistent with those in the cmap table. If they are not,
the font will not load in Windows. When building a Unicode font for Windows, the platform ID should be 3 and
the encoding ID should be 1. When building a symbol font for Windows, the platform ID should be 3 and the
encoding ID should be 0.

When building a font containing Roman characters that will be used on the Macintosh, an additional name
record is required, specifying platform ID of 1 and encoding ID of 0.

Each set of name records should appear for US English (language ID = 0x0409 for Windows platform records,
language ID = 0 for Macintosh records); additional language strings for the Windows platform set of records
(platform ID 3) may be added at the discretion of the font vendor.

Remember that, despite references to "first" and "second," the name record must be stored in sorted order (by
platform ID, encoding ID, language ID, name ID). The 'name' table platform/encoding IDs must match the
'cmap' table platform/encoding IDs, which is how Windows knows which name set to use.

Name strings

We recommend using name ID's 8-12, to identify manufacturer, designer, description, URL of the vendor, and
URL of the designer. URL's must contain the protocol of the site: for example, http:// or mailto: or ftp://. The
OFF font properties extension can enumerate this information to the users.

The Subfamily string in the 'name' table should be used for variants of weight (ultra light to extra black) and
style (oblique/italic or not). So, for example, the full font name of "Helvetica Narrow Italic" should be defined as
Family name "Helvetica Narrow" and Subfamily "Italic". This is so that Windows can group the standard four
weights of a font in a reasonable fashion for non-typographically aware applications which only support
combinations of "bold" and "italic."

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 345

The Full font name string usually contains a concatenation of strings 1 and 2. However, if the font is 'Regular'
as indicated in string 2, then use only the family name contained in string 1. This is the font name that
Windows will expose to users.

'OS/2' Table

All data required. We recommend applying PANOSE values to fonts to improve the user's experience when
using the Windows fonts folder or other font management utilities. If the font is a symbol font, the first byte of
the PANOSE value must be set to 'decorative.'

sTypoAscender, sTypoDescender and sTypoLineGap

sTypoAscender is used to determine the optimum Offset from the top of a text frame to the first baseline.
sTypoDescender is used to determine the optimum Offset from the last baseline to the bottom of the text
frame. The value of (sTypoAscender - sTypoDescender) is recommended to equal one em.

While the OFF specification allows for CJK (Chinese, Japanese, and Korean) fonts' sTypoDescender and
sTypoAscender fields to specify metrics different from the HorizAxis.ideo and HorizAxis.idtp baselines in the
'BASE' table, CJK font developers should be aware that existing applications may not read the 'BASE' table at
all but simply use the sTypoDescender and sTypoAscender fields to describe the bottom and top edges of the
ideographic em-box. If developers want their fonts to work correctly with such applications, they should ensure
that any ideographic em-box values in the 'BASE' table describe the same bottom and top edges as the
sTypoDescender and sTypoAscender fields. See subclause 6 "OFF CJK Font Guidelines" and "Ideographic
Em-Box" respectively for more details.

For Western fonts, the Ascender and Descender fields in Type 1 fonts' AFM files are a good source of
sTypoAscender and sTypoDescender, respectively. The Minion Pro font family (designed on a 1000-unit em),
for example, sets sTypoAscender = 727 and sTypoDescender = -273.

sTypoAscender, sTypoDescender and sTypoLineGap specify the recommended line spacing for single-
spaced horizontal text. The baseline-to-baseline value is expressed by:

OS/2.sTypoAscender - OS/2.sTypoDescender + OS/2.sTypoLineGap

sTypoLineGap will usually be set by the font developer such that the value of the above expression is
approximately 120% of the em. The application can use this value as the default horizontal line spacing. The
Minion Pro font family (designed on a 1000-unit em), for example, sets sTypoLineGap = 200.

'post' Table

All information required, although the VM Usage fields may be set to zero. OFF fonts containing CFF outlines
use only format 3.0 of the 'post' table. Glyph names are described in the Adobe document "Unicode and
Glyph Names" in the informative reference 3 in the bibliography, which specifies glyph naming conventions for
all Unicode characters as well as those that don't have standard Unicode values such as certain ligatures or
glyphic variants.
NOTE Names for all glyphs must be supplied as it cannot be assumed that all Windows platforms will support the
default names supplied on the Macintosh.

'prep' Table

Should be defined only if required by the TrueType font instructions.

'VDMX' Table

This table improves the performance of OFF fonts with TrueType outlines. It should be present if hints cause
the font to scale non-linearly. If not present, the font is assumed to scale linearly. Clipping may occur if values
in this table are absent and font exceeds linear height.

ISO/IEC FDIS 14496-22:2006(E)

346 © ISO/IEC 2006 — All rights reserved

7 General Recommendations

7.1 Optimized Table Ordering
OFF fonts with TrueType outlines are more efficient in the Windows operating system when the tables are
ordered as follows (from first to last):

head, hhea, maxp, OS/2, hmtx, LTSH, VDMX, hdmx, cmap, fpgm, prep, cvt, loca, glyf, kern, name, post, gasp,
PCLT, DSIG

The initial loading of an OFF font containing CFF data will be more efficiently handled if the following sfnt table
ordering is used within the body of the sfnt (listed from first to last):

head, hhea, maxp, OS/2, name, cmap, post, CFF, (other tables, as convenient)

7.2 Non-Standard (Symbol) Fonts
Non-standard fonts such as Symbol or Wingdings™ have special requirements for Windows platforms. These
requirements affect the 'cmap,' 'name,' and 'OS/2' tables; the requirements and recommendations for all other
tables remain the same.

For non-standard fonts on Windows platforms, however, the 'cmap' and 'name' tables must use platform ID 3
() and encoding ID 0 (Unicode, non-standard character set). Remember that 'name' table encodings should
agree with the 'cmap' table. Additionally, the first byte of the PANOSE value in the 'OS/2' table must be set to
'decorative.'

The 'cmap' subtable (platform 3, encoding 0) must use format 4. The character codes should start at 0xF000,
which is in the Private Use Area of Unicode. It is suggested to derive the format 4 (encodings by simply
adding 0xF000 to the format 0 (Macintosh) encodings.

Under Windows, only the first 224 characters of non-standard fonts will be accessible: a space and up to 223
printing characters. It does not matter where in user space these start, but 0xF020 is suggested. The
usFirstCharIndex and usLastCharIndex values in the 'OS/2' table would be set based on the actual minimum
and maximum character indices used.

7.3 Device Resolutions
Windows makes use of a logical device resolution. The physical resolution of a device is also available, but
fonts will be rendered based on the logical resolution. The table below lists some important logical resolutions
in dots per inch (Horizontal x Vertical). The most important ratios (in order) are 1:1, 1.67:1 and 1.33:1.

Device Resolution Aspect Ratio

CGA 96 x 48 2:1

EGA 96 x 72 1.33:1

VGA 96 x 96 1:1

8514 120 x 120 1:1

Dot Matrix 120 x 72 1.67:1

Laser Printer 300 x 300 1:1

Laser Printer 600 x 600 1:1

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 347

7.4 Baseline to Baseline Distances
The 'OS/2' table fields sTypoAscender, sTypoDescender, and sTypoLineGap free applications from
Macintosh- or Windows-specific metrics which are constrained by backward compatibility requirements. The
following discussion only pertains to the platform-specific metrics.

The suggested Baseline to Baseline Distance (BTBD) is computed differently for Windows and the Macintosh,
and it is based on different OFF metrics. However, if the recommendations below are followed, the BTBD will
be the same for both Windows and the Mac.

Windows

The Windows metrics in the table below are returned as part of the logical font data structure.

Windows Metric OFF Metric

Ascent usWinAscent

descent usWinDescent

internal leading usWinAscent + usWinDescent - unitsPerEm

external leading MAX(0, LineGap - ((usWinAscent + usWinDescent) - (Ascender - Descender)))

The suggested BTBD = ascent + descent + external leading

It should be clear that the "external leading" can never be less than zero. Pixels above the ascent or below the
descent will be clipped from the character; this is true for all output devices.

The usWinAscent and usWinDescent are values from the 'OS/2' table. The unitsPerEm value is from the
'head' table. The LineGap, Ascender and Descender values are from the 'hhea' table.

Macintosh

Ascender and Descender are metrics defined and are not to be confused with the Windows ascent or descent,
nor should they be confused with the true typographic ascender and descender that are found in AFM files.

Macintosh Metric OFF Metric

ascender Ascender

descender Descender

Leading LineGap

The suggested BTBD = ascent + descent + leading

If pixels extend above the ascent or below the descent, the character will be squashed in the vertical direction
so that all pixels fit within these limitations; this is true for screen display only.

Making Them Match

If you perform some simple algebra, you will see that the suggested BTBD across both Macintosh and
Windows will be identical if and only if:
LineGap >= (yMax - yMin) - (Ascender - Descender)

ISO/IEC FDIS 14496-22:2006(E)

348 © ISO/IEC 2006 — All rights reserved

7.5 Style Bits
For backwards compatibility with previous versions of Windows, the macStyle bits in the 'head' table will be
used to determine whether or not a font is regular, bold or italic (in the absence of an 'OS/2' table). This is
completely independent of the usWeightClass and PANOSE information in the 'OS/2' table, the ItalicAngle in
the 'post' table, and all other related metrics. If the 'OS/2' table is present, then the fsSelection bits are used to
determine this information.

7.6 Drop-out Control
Drop-out control is needed if there is a difference in bitmaps with dropout control on and off. Two cases where
drop-out control is needed are when the font is rotated or when the size of the font is at or below 8 ppem. Do
not use SCANCTRL unless needed. SCANCTRL or the drop-out control rasterizer should be avoided for
Roman fonts above 8 points per em (ppem) when the font is not under rotation. SCANCTRL should not be
used for "stretched" fonts (e.g. fonts displayed at non-square aspect ratios, like that found on an EGA).

7.7 Embedded Bitmaps
Three tables are used to embed bitmaps in OFF fonts. They are the 'EBLC' table for embedded bitmap
locators, the 'EBDT' table for embedded bitmap data, and the 'EBSC' table for embedded bitmap scaling
information. OFF embedded bitmaps are also called 'sbits'.

The behavior of sbits within an OFF font is essentially transparent to the client. A client need not be aware
whether the bitmap returned by the rasterizer comes from an sbit or from a scan-converted outline.

The metrics in 'sbit' tables overrule the outline metrics at all sizes where sbits are defined. Fonts with 'hdmx'
tables should correct those tables with 'sbit' values.

'Sbit only' fonts, that is fonts with embedded bitmaps but without outline data, are permitted. Care must be
taken to ensure that all required OFF tables except 'glyf' and 'loca' are present in such a font. Obviously, such
fonts will only be able to return glyphs and sizes for which sbits are defined. These metrics are returned as
part of the logical font data structure in the Macintosh platform.

7.8 OFF CJK Font Guidelines
This clause provides a checklist of links to various CJK-related clauses of the OFF specification. Some items
are requirements; others, recommendations:

1. The ideographic em-box of an OFF font will be determined as described in "Ideographic Em-Box" in
the Baseline Tags of the OFF Layout Tag Registry. Also see the description for OS/2.sTypoAscender
and OS/2.sTypoDescender, and the 'BASE' table recommendation in clause 6.above.

2. CJK font vendors can choose to provide the ideographic character face (ICF) metrics, which
applications can use for accurate text alignment. This is described in "Ideographic Character Face" in
the Baseline Tags clause of the OFF Layout Tag Registry.

3. All OFF fonts that are used for vertical writing must include a Vertical Header ('vhea') table and a
Vertical Metrics ('vmtx') table. CFF OFF fonts that are used for vertical writing may also include,
optionally, a Vertical Origin ('VORG') table for precise vertical origin information.

4. If an OFF font with CFF outlines is to be used for vertical writing, Adobe Type Manager/NT 4.1 and
the Windows 2000 OTF driver require that a Vertical Rotation ('vrt2') feature be present in the Glyph
Substitution ('GSUB') table. See the Feature Tags informative reference 9 in the bibliography for a
description of and further requirements for this feature.

5. See the Feature Tags in informative reference 9 in the bibliography for descriptions of currently
registered OFF layout features, such as Alternate Half Widths ('halt') and Traditional Forms ('trad')
that can be specified in the font.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 349

Annex A
(informative)

Patent Statements

The International Organization for Standardization and the International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the
use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licenses
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statements of the holders of these patents right are registered with ISO and IEC. Information may
be obtained from the companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the
subject of patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

Company

Apple Computer, Inc.

Microsoft Corporation

Monotype Imaging Inc.

ISO/IEC FDIS 14496-22:2006(E)

350 © ISO/IEC 2006 — All rights reserved

Annex B
(informative)

Font Class and Font Subclass parameters

B.1 Introduction

This annex defines the Font Class and the Font Subclass parameter values to be used in the classification of
font designs by the font designer or supplier. This information is stored in the sFamilyClass field of a font's
OS/2 table.

B.2 sFamilyClass

Format: 2-byte signed short

Title: Font-family class and subclass. Also see caluse A.3.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM to each font family. This
parameter is intended for use in selecting an alternate font when the requested font is not available. The font
class is the most general and the font subclass is the most specific. The high byte of this field contains the
family class, while the low byte contains the family subclass.

These values classify a font design as to its appearance, but do not identify the specific font family, typeface
variation, designer, supplier, size, or metric table differences. It should be noted that some font designs may
be classified equally well into more than IBM Font Class or Subclass. Such designs should be matched to a
classification for which substitution of another font design from the same class or subclass would generally
result in a similar appearance of the presented document.

B.3 Class ID=0 No Classification

This class ID is used to indicate that the associated font has no design classification or that the design
classification is not of significance to the creator or user of the font resource.

B.4 Class ID=1 Oldstyle Serifs

This style is generally based upon the Latin printing style of the 15th to 17th century, with a mild diagonal
contrast in stroke emphasis (lighter in upper left to lower right, heavier in upper right to lower left) and
bracketed serifs. This Class reflects the ISO Serif Class, Oldstyle and Legibility Subclasses as documented in
the 12/87 ISO/IEC 9541-5 draft standard.

B.4.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
subclassification is not of significance to the creator or user of the font resource.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 351

B.4.2 Subclass ID = 1 : IBM Rounded Legibility

This style is generally characterized by a large x-height, with short ascenders and descenders. Specifically, it
is distinguished by a medium resolution, hand tuned, bitmap rendition of the more general rounded legibility
subclass. An example of this font style is the IBM Sonoran Serif family. This Subclass reflects the ISO Serif
Class, Legibility Subclass, and Rounded Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

B.4.3 Subclass ID = 2 : Garalde

This style is generally characterized by a medium x-height, with tall ascenders. An example of this font style is
the ITC Garamond family. This IBM Subclass reflects the ISO Serif Class, Oldstyle Subclass, and Garalde
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.4 Subclass ID = 3 : Venetian

This style is generally characterized by a medium x-height, with a relatively monotone appearance and
sweeping tails based on the designs of the early Venetian printers. An example of this font style is the Goudy
family. This IBM Subclass reflects the ISO Serif Class, Oldstyle Subclass, and Venetian Specific Group as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.5 Subclass ID = 4 : Modified Venetian

This style is generally characterized by a large x-height, with a relatively monotone appearance and sweeping
tails based on the designs of the early Venetian printers. An example of this font style is the Allied Linotype
Palatino family. This IBM Subclass reflects the ISO Serif Class, Transitional Subclass, and Modified Specific
Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.6 Subclass ID = 5 : Dutch Modern

This style is generally characterized by a large x-height, with wedge shaped serifs and a circular appearance
to the bowls similar to the Dutch Traditional Subclass below, but with lighter stokes. An example of this font
style is the Monotype Times New Roman family. This IBM Subclass reflects the ISO Serif Class, Oldstyle
Subclass, and Dutch Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.7 Subclass ID = 6 : Dutch Traditional

This style is generally characterized by a large x-height, with wedge shaped serifs and a circular appearance
of the bowls. An example of this font style is the IBM Press Roman family. This IBM Subclass reflects the ISO
Serif Class and Legibility Subclass as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.8 Subclass ID = 7 : Contemporary

This style is generally characterized by a small x-height, with light stokes and serifs. An example of this font
style is the University family. This IBM Subclass reflects the ISO Serif Class and Contemporary Subclass as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.4.9 Subclass ID = 8 : Calligraphic

This style is generally characterized by the fine hand writing style of calligraphy, while retaining the
characteristic Oldstyle appearance. This IBM Subclass is not reflected in the 12/87 ISO/IEC 9541-5 draft
standard.

B.4.10 Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

ISO/IEC FDIS 14496-22:2006(E)

352 © ISO/IEC 2006 — All rights reserved

B.4.11 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.5 Class ID=2 Transitional Serifs

This style is generally based upon the Latin printing style of the 18th to 19th century, with a pronounced
vertical contrast in stroke emphasis (vertical strokes being heavier than the horizontal strokes) and bracketed
serifs. This IBM Class reflects the ISO Serif Class, Transitional Subclass as documented in the 12/87 ISO/IEC
9541-5 draft standard.

B.5.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.5.2 Subclass ID = 1 : Direct Line

This style is generally characterized by a medium x-height, with fine serifs, noticeable contrast, and capitol
letters of approximately the same width. An example of this font style is the Monotype Baskerville family. This
IBM Subclass reflects the ISO Serif Class, Transitional Subclass, and Direct Line Specific Group as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.5.3 Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while retaining the Transitional Direct
Line style. An example of this font style is the IBM Nasseem (Arabic) family. This IBM Subclass is not
specifically reflected in the 12/87 ISO/IEC 9541-5 draft standard, though the ISO Serif Class, Transitional
Subclass, and Direct Line Specific Group would be a close approximation.

B.5.4 Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.5.5 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.6 Class ID=3 Modern Serifs

This style is generally based upon the Latin printing style of the 20th century, with an extreme contrast
between the thick and thin portion of the strokes. This IBM Class reflects the ISO Serif Class, Modern
Subclass as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.6.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 353

B.6.2 Subclass ID = 1 : Italian

This style is generally characterized by a medium x-height, with thin hairline serifs. An example of this font
style is the Monotype Bodoni family. This IBM Subclass reflects the ISO Serif Class, Modern Subclass, and
Italian Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.6.3 Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while retaining the Modern Italian
style. An example of this font style is the IBM Narkissim (Hebrew) family. This IBM Subclass is not specifically
reflected in the 12/87 ISO/IEC 9541-5 draft standard, though the ISO Serif Class, Modern Subclass, and
Italian Specific Group would be a close approximation.

B.6.4 Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.6.5 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.7 Class ID=4 Clarendon Serifs

This style is a variation of the Oldstyle Serifs and the Transitional Serifs, with a mild vertical stroke contrast
and bracketed serifs. This IBM Class reflects the ISO Serif Class, Square Serif Subclass as documented in
the 12/87 ISO/IEC 9541-5 draft standard.

B.7.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.7.2 Subclass ID = 1 : Clarendon

This style is generally characterized by a large x-height, with serifs and strokes of equal weight. An example of
this font style is the Allied Linotype Clarendon family. This IBM Subclass reflects the ISO Serif Class, Square
Serif Subclass, and Clarendon Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.7.3 Subclass ID = 2 : Modern

This style is generally characterized by a large x-height, with serifs of a lighter weight than the strokes and the
strokes of a lighter weight than the Traditional. An example of this font style is the Monotype Century
Schoolbook family. This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and Clarendon
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.7.4 Subclass ID = 3 : Traditional

This style is generally characterized by a large x-height, with serifs of a lighter weight than the strokes. An
example of this font style is the Monotype Century family.This IBM Subclass reflects the ISO Serif Class,
Square Serif Subclass, and Clarendon Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

ISO/IEC FDIS 14496-22:2006(E)

354 © ISO/IEC 2006 — All rights reserved

B.7.5 Subclass ID = 4 : Newspaper

This style is generally characterized by a large x-height, with a simpler style of design and serifs of a lighter
weight than the strokes. An example of this font style is the Allied Linotype Excelsior Family. This IBM
Subclass reflects the ISO Serif Class, Square Serif Subclass, and Clarendon Specific Group as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

B.7.6 Subclass ID = 5 : Stub Serif

This style is generally characterized by a large x-height, with short stub serifs and relatively bold stems. An
example of this font style is the Cheltenham Family. This IBM Subclass reflects the ISO Serif Class, Square
Serif Subclass, and Short Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.7.7 Subclass ID = 6 : Monotone

This style is generally characterized by a large x-height, with monotone stems. An example of this font style is
the ITC Korinna Family. This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.7.8 Subclass ID = 7 : Typewriter

This style is generally characterized by a large x-height, with moderate stroke thickness characteristic of a
typewriter. An example of this font style is the Prestige Elite Family. This IBM Subclass reflects the ISO Serif
Class, Square Serif Subclass, and Typewriter Specific Group as documented in the 12/87 ISO/IEC 9541-5
draft standard.

B.7.9 Subclass ID = 8-14: (reserved for future use)

These subclass IDs are reserved for future assignment.

B.7.10 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.8 Class ID=5 Slab Serifs

This style is characterized by serifs with a square transition between the strokes and the serifs (no brackets).
This IBM Class reflects the ISO Serif Class, Square Serif Subclass (except the Clarendon Specific Group) as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.8.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.8.2 Subclass ID = 1 : Monotone

This style is generally characterized by a large x-height, with serifs and strokes of equal weight. An example of
this font style is the ITC Lubalin Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 355

B.8.3 Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with serifs of lighter weight that the strokes. An
example of this font style is the Candida Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.8.4 Subclass ID = 3 : Geometric

This style is generally characterized by a large x-height, with serifs and strokes of equal weight and a
geometric (circles and lines) design. An example of this font style is the Monotype Rockwell Family. This IBM
Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific Group as documented in
the 12/87 ISO/IEC 9541-5 draft standard.

B.8.5 Subclass ID = 4 : Swiss

This style is generally characterized by a large x-height, with serifs and strokes of equal weight and an
emphasis on the white space of the characters. An example of this font style is the Allied Linotype Serifa
Family. This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific Group
as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.8.6 Subclass ID = 5 : Typewriter

This style is generally characterized by a large x-height, with serifs and strokes of equal but moderate
thickness, and a geometric design. An example of this font style is the IBM Courier Family. This IBM Subclass
reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

B.8.7 Subclass ID = 6-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used without formal assignment by
IBM.

B.8.8 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.9 Class ID=6 (reserved for future use)

This class ID is reserved for future assignment.

B.10 Class ID=7 Freeform Serifs

This style includes serifs, but which expresses a design freedom that does not generally fit within the other
serif design classifications. This IBM Class reflects the remaining ISO Serif Class subclasses as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

B.10.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

ISO/IEC FDIS 14496-22:2006(E)

356 © ISO/IEC 2006 — All rights reserved

B.10.2 Subclass ID = 1 : Modern

This style is generally characterized by a medium x-height, with light contrast in the strokes and a round full
design. An example of this font style is the ITC Souvenir Family. This IBM Subclass is not reflected in the
12/87 ISO/IEC 9541-5 draft standard.

B.10.3 Subclass ID = 2-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.10.4 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.11 Class ID=8 Sans Serifs

This style includes most basic letter forms (excluding Scripts and Ornamentals) that do not have serifs on the
strokes. This IBM Class reflects the ISO Sans Serif Class as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

B.11.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.11.2 Subclass ID = 1 : IBM Neo-grotesque Gothic

This style is generally characterized by a large x-height, with uniform stroke width and a simple one story
design distinguished by a medium resolution, hand tuned, bitmap rendition of the more general Neo-grotesque
Gothic Subclass. An example of this font style is the IBM Sonoran Sans Serif family. This IBM Subclass
reflects the ISO Sans Serif Class, Gothic Subclass, and Neo-grotesque Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

B.11.3 Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with light contrast in the strokes and a classic
Roman letterform. An example of this font style is the Allied Linotype Optima family. This IBM Subclass
reflects the ISO Sans Serif Class, Humanist Subclass as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

B.11.4 Subclass ID = 3 : Low-x Round Geometric

This style is generally characterized by a low x-height, with monotone stroke weight and a round geometric
design. An example of this font style is the Fundicion Tipograficia Neufville Futura family. This IBM Subclass
reflects the ISO Sans Serif Class, Geometric Subclass, Round Specific Group as documented in the 12/87
ISO/IEC 9541-5 draft standard.

B.11.5 Subclass ID = 4 : High-x Round Geometric

This style is generally characterized by a high x-height, with uniform stroke weight and a round geometric
design. An example of this font style is the ITC Avant Garde Gothic family. This IBM Subclass reflects the ISO
Sans Serif Class, Geometric Subclass, Round Specific Group as documented in the 12/87 ISO/IEC 9541-5
draft standard.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 357

B.11.6 Subclass ID = 5 : Neo-grotesque Gothic

This style is generally characterized by a high x-height, with uniform stroke width and a simple one story
design. An example of this font style is the Allied Linotype Helvetica family. This IBM Subclass reflects the ISO
Sans Serif Class, Gothic Subclass, Neo-grotesque Specific Group as documented in the 12/87 ISO/IEC 9541-
5 draft standard.

B.11.7 Subclass ID = 6 : Modified Neo-grotesque Gothic

This style is similar to the Neo-grotesque Gothic style, with design variations to the G and Q. An example of
this font style is the Allied Linotype Univers family. This IBM Subclass reflects the ISO Sans Serif Class,
Gothic Subclass, Neo-grotesque Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.11.8 Subclass ID = 7-8 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.11.9 Subclass ID = 9 : Typewriter Gothic

This style is similar to the Neo-grotesque Gothic style, with moderate stroke thickness characteristic of a
typewriter. An example of this font style is the IBM Letter Gothic family. This IBM Subclass reflects the ISO
Sans Serif Class, Gothic Subclass, Typewriter Specific Group as documented in the 12/87 ISO/IEC 9541-5
draft standard.

B.11.10 Subclass ID = 10 : Matrix

This style is generally a simple design characteristic of a dot matrix printer. An example of this font style is the
IBM Matrix Gothic family. This IBM Subclass is not reflected in the 12/87 ISO/IEC 9541-5 draft standard.

B.11.11 Subclass ID = 11-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.11.12 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.12 Class ID=9 Ornamentals

This style includes highly decorated or stylized character shapes that are typically used in headlines. This IBM
Class reflects the ISO Ornamental Class and the ISO Blackletter Class as documented in the 12/87 ISO/IEC
9541-5 draft standard.

B.12.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.12.2 Subclass ID = 1 : Engraver

This style is characterized by fine lines or lines engraved on the stems. An example of this font style is the
Copperplate family. This IBM Subclass reflects the ISO Ornamental Class and Inline Subclass, or the Serif
Class and Engraving Subclass as documented in the 12/87 ISO/IEC 9541-5 draft standard.

ISO/IEC FDIS 14496-22:2006(E)

358 © ISO/IEC 2006 — All rights reserved

B.12.3 Subclass ID = 2 : Black Letter

This style is generally based upon the printing style of the German monasteries and printers of the 12th to
15th centuries. An example of this font style is the Old English family. This IBM Subclass reflects the ISO
Blackletters Class as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.12.4 Subclass ID = 3 : Decorative

This style is characterized by ornamental designs (typically from nature, such as leaves, flowers, animals,
etc.) incorporated into the stems and strokes of the characters. An example of this font style is the Saphire
family. This IBM Subclass reflects the ISO Ornamental Class and Decorative Subclass as documented in the
12/87 ISO/IEC 9541-5 draft standard.

B.12.5 Subclass ID = 4 : Three Dimensional

This style is characterized by a three dimensional (raised) appearance of the characters created by shading or
geometric effects. An example of this font style is the Thorne Shaded family. This IBM Subclass reflects the
ISO Ornamental Class and Three Dimensional Subclass as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

B.12.6 Subclass ID = 5-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.12.7 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.13 Class ID=10 Scripts

This style includes those typefaces that are designed to simulate handwriting. This IBM Class reflects the ISO
Script Class and Uncial Class as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.13.2 Subclass ID = 1 : Uncial

This style is characterized by unjoined (nonconnecting) characters that are generally based on the hand
writing style of Europe in the 6th to 9th centuries. An example of this font style is the Libra family. This IBM
Subclass reflects the ISO Uncial Class as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.3 Subclass ID = 2 : Brush Joined

This style is characterized by joined (connecting) characters that have the appearance of being painted with a
brush, with moderate contrast between thick and thin strokes. An example of this font style is the Mistral
family. This IBM Subclass reflects the ISO Script Class, Joined Subclass, and Informal Specific Group as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 359

B.13.4 Subclass ID = 3 : Formal Joined

This style is characterized by joined (connecting) characters that have a printed (or drawn with a stiff brush)
appearance with extreme contrast between the thick and thin strokes. An example of this font style is the
Coronet family. This IBM Subclass reflects the ISO Script Class, Joined Subclass, and Formal Specific Group
as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.5 Subclass ID = 4 : Monotone Joined

This style is characterized by joined (connecting) characters that have a uniform appearance with little or no
contrast in the strokes. An example of this font style is the Kaufmann family. This IBM Subclass reflects the
ISO Script Class, Joined Subclass, and Monotone Specific Group as documented in the 12/87 ISO/IEC 9541-
5 draft standard.

B.13.6 Subclass ID = 5 : Calligraphic

This style is characterized by beautifully hand drawn, unjoined (non-connecting) characters that have an
appearance of being drawn with a broad edge pen. An example of this font style is the Thompson Quillscript
family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Calligraphic Specific Group
as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.7 Subclass ID = 6 : Brush Unjoined

This style is characterized by unjoined (non-connecting) characters that have the appearance of being painted
with a brush, with moderate contrast between thick and thin strokes. An example of this font style is the
Saltino family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Brush Specific Group
as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.8 Subclass ID = 7 : Formal Unjoined

This style is characterized by unjoined (non-connecting) characters that have a printed (or drawn with a stiff
brush) appearance with extreme contrast between the thick and thin strokes. An example of this font style is
the Virtuosa family. This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and Formal Specific
Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.13.9 Subclass ID = 8 : Monotone Unjoined

This style is characterized by unjoined (non-connecting) characters that have a uniform appearance with little
or no contrast in the strokes. An example of this font style is the Gilles Gothic family. This IBM Subclass
reflects the ISO Script Class, Unjoined Subclass, and Monotone Specific Group as documented in the 12/87
ISO/IEC 9541-5 draft standard.

B.13.10 Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used without formal assignment by
IBM.

B.13.11 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

B.14 Class ID=11 (reserved for future use)

This class ID is reserved for future assignment.

ISO/IEC FDIS 14496-22:2006(E)

360 © ISO/IEC 2006 — All rights reserved

B.15 Class ID=12 Symbolic

This style is generally design independent, making it suitable for Pi and special characters (icons, dingbats,
technical symbols, etc.) that may be used equally well with any font. This IBM Class reflects various ISO
Specific Groups, as noted below and documented in the 12/87 ISO/IEC 9541-5 draft standard.

B.15.1 Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-classification or that the design
sub-classification is not of significance to the creator or user of the font resource.

B.15.2 Subclass ID = 1-2 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.15.3 Subclass ID = 3 : Mixed Serif

This style is characterized by either both or a combination of serif and sans serif designs on those characters
of the font for which design is important (e.g., superscript and subscript characters, numbers, copyright or
trademark symbols, etc.). An example of this font style is found in the IBM Symbol family. This IBM Subclass
is not reflected in the 12/87 ISO/IEC 9541-5 draft standard.

B.15.4 Subclass ID = 4-5 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.15.5 Subclass ID = 6 : Oldstyle Serif

This style is characterized by a Oldstyle Serif IBM Class design on those characters of the font for which
design is important (e.g., superscript and subscript characters, numbers, copyright or trademark symbols,
etc.). An example of this font style is found in the IBM Sonoran Pi Serif family. This IBM Subclass is not
directly reflected in the 12/87 ISO/IEC 9541-5 draft standard, though it is indirectly by the ISO Serif Class and
Legibility Subclass (implies that all characters of the font exhibit the design appearance, while only a subset of
the characters actually exhibit the design).

B.15.6 Subclass ID = 7 : Neo-grotesque Sans Serif

This style is characterized by a Neo-grotesque Sans Serif IBM Font Class and Subclass design on those
characters of the font for which design is important (e.g., superscript and subscript characters, numbers,
copyright or trademark symbols, etc.). An example of this font style is found in the IBM Sonoran Pi Sans Serif
family. This IBM Subclass is not directly reflected in the 12/87 ISO/IEC 9541-5 draft standard, though it is
indirectly by the ISO Sans Serif Class and Gothic Subclass (implies that all characters of the font exhibit the
design appearance, while only a subset of the characters actually exhibit the design).

B.15.7 Subclass ID = 8-14 : (reserved for future use)

These subclass IDs are reserved for future assignment.

B.15.8 Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design class that are not covered by
another Subclass.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 361

B.16 Class ID=13 Reserved

B.17 Class ID=14 Reserved

ISO/IEC FDIS 14496-22:2006(E)

362 © ISO/IEC 2006 — All rights reserved

Annex C
(informative)

Earlier versions of OS/2 – OS/2 and Windows Metrics

C.1 OS/2 - OS/2 and Windows Metrics (Version 0)

NOTE This is maintained for purposes of being able to validate version 0 OS/2 tables.

The OS/2 table consists of a set of metrics that are required in OFF fonts. The layout
of version 0 of this table is as follows:

Type Name of Entry Comments

USHORT version 0x0000

SHORT xAvgCharWidth

USHORT usWeightClass

USHORT usWidthClass

USHORT fsType

SHORT ySubscriptXSize

SHORT ySubscriptYSize

SHORT ySubscriptXOffset

SHORT ySubscriptYOffset

SHORT ySuperscriptXSize

SHORT ySuperscriptYSize

SHORT ySuperscriptXOffset

SHORT ySuperscriptYOffset

SHORT yStrikeoutSize

SHORT yStrikeoutPosition

SHORT sFamilyClass

BYTE panose[10]

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 363

ULONG ulCharRange[4] Bits 0-31

CHAR achVendID[4]

USHORT fsSelection

USHORT usFirstCharIndex

USHORT usLastCharIndex

SHORT sTypoAscender

SHORT sTypoDescender

SHORT sTypoLineGap

USHORT usWinAscent

USHORT usWinDescent

version

Format: 2-byte unsigned short

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents
and layout for the OS/2 table. The version number for this layout is
zero (0).

xAvgCharWidth

Format: 2-byte signed short

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic
average of the escapement (width) of all of the 26 lowercase letters a
through z of the Latin alphabet and the space character. If any of the
26 lowercase letters are not present, this parameter should equal the
weighted average of all glyphs in the font. For non-UGL (platform 3,
encoding 0) fonts, use the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the
spacing of characters for comparing one font to another for selection

ISO/IEC FDIS 14496-22:2006(E)

364 © ISO/IEC 2006 — All rights reserved

or substitution. For proportionally spaced fonts, this value is useful in
estimating the length for lines of text. The weighting factors provided
with this example are only valid for Latin lowercase letters. If other
character sets, or capital letters are used, the corresponding
frequency of use values should be used. One needs to be careful
when comparing fonts that use different frequency of use values for
font mapping. The average character width for the following set of
upper and lowercase letters only, is calculated according to this
formula: Sum the individual character widths multiplied by the
following weighting factors and then divide by 1000. For example:

Letter Weight
Factor Letter Weight

Factor

a 64 o 56

b 14 p 17

c 27 q 4

d 35 r 49

e 100 s 56

f 20 t 71

g 14 u 31

h 42 v 10

i 63 w 18

j 3 x 3

k 6 y 18

l 35 z 2

m 20 space 166

n 56

usWeightClass

Format: 2-byte unsigned short

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of
strokes) of the characters in the font.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 365

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: 2-byte unsigned short

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to
height ratio) as specified by a font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric
aspect ratio, each character in a font of normal width has a relative
aspect ratio of one. When a new type style is created of a different
width class (either by a font designer or by some automated means)
the relative aspect ratio of the characters in the new font is some
percentage greater or less than those same characters in the normal
font -- it is this difference that this parameter specifies.

Value Description C Definition % of
normal

1 Ultra-
condensed

FWIDTH_ULTRA_CONDENSED 50

2 Extra-
condensed

FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi- FWIDTH_SEMI_CONDENSED 87.5

ISO/IEC FDIS 14496-22:2006(E)

366 © ISO/IEC 2006 — All rights reserved

condensed

5 Medium
(normal)

FWIDTH_NORMAL 100

6 Semi-
expanded

FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-
expanded

FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: 2-byte unsigned short

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable
fonts may be stored in a document. When a document with
embedded fonts is opened on a system that does not have the font
installed (the remote system), the embedded font may be loaded for
temporary (and in some cases, permanent) use on that system by an
embedding-aware application. Embedding licensing rights are granted
by the vendor of the font.

Applications that implement support for font embedding, either
through use of the Font Embedding DLL or through other means,
must not embed fonts which are not licensed to permit embedding.
Further, applications loading embedded fonts for temporary use (see
Preview & Print and Editable embedding below) must delete the fonts
when the document containing the embedded font is closed.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set.
Thus fsType is zero.
Fonts with this setting indicate that they may be
embedded and permanently installed on the
remote system by an application. The user of
the remote system acquires the identical rights,
obligations and licenses for that font as the
original purchaser of the font, and is subject to
the same end-user license agreement,
copyright, design patent, and/or trademark as
was the original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be
modified, embedded or exchanged in any

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 367

manner without first obtaining permission of
the legal owner.
Caution: For Restricted License embedding to
take effect, it must be the only level of
embedding selected.

2 0x0004 Preview & Print embedding: When this bit is
set, the font may be embedded, and
temporarily loaded on the remote system.
Documents containing Preview & Print fonts
must be opened "read-only;" no edits can be
applied to the document.

3 0x0008 Editable embedding: When this bit is set, the
font may be embedded but must only be
installed temporarily on other systems. In
contrast to Preview & Print fonts, documents
containing Editable fonts may be opened for
reading, editing is permitted, and changes may
be saved.

4-15 Reserved, must be zero.

Comments: If multiple embedding bits are set, the least restrictive license granted
takes precedence. For example, if bits 1 and 3 are set, bit 3 takes
precedence over bit 1and the font may be embedded with Editable
rights. For compatibility purposes, most vendors granting Editable
embedding rights are also setting the Preview & Print bit (0x000C).
This will permit an application that only supports Preview & Print
embedding to detect that font embedding is allowed.

 Restricted License embedding (0x0002): Fonts that have this bit set
must not be modified, embedded or exchanged in any manner
without first obtaining permission of the legal owner. Caution: note that
for Restricted License embedding to take effect, it must be the only
level of embedding selected (as noted in the previous paragraph).

 Preview & Print embedding (0x0004): Fonts with this bit set indicate
that they may be embedded within documents but must only be
installed temporarily on the remote system. Any document which
includes a Preview & Print embedded font must be opened “read-
only;” the application must not allow the user to edit the document; it
can only be viewed and/or printed.

 Editable embedding (0x0008): Fonts with this bit set indicate that
they may be embedded in documents, but must only be installed
temporarily on the remote system. In contrast to Preview & Print fonts,
documents containing Editable fonts may be opened “read-write;”
editing is permitted, and changes may be saved.

 Installable embedding (0x0000): Fonts with this setting indicate that
they may be embedded and permanently installed on the remote
system by an application. The user of the remote system acquires the
identical rights, obligations and licenses for that font as the original
purchaser of the font, and is subject to the same end-user license
agreement, copyright, design patent, and/or trademark as was the

ISO/IEC FDIS 14496-22:2006(E)

368 © ISO/IEC 2006 — All rights reserved

original purchaser.

ySubscriptXSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript horizontal font size.

Description: The recommended horizontal size in font design units for subscripts
for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics
and other, the numeric sizes should be stressed. This size field maps
to the em square size of the font being used for a subscript. The
horizontal font size specifies a font designer's recommended
horizontal font size for subscript characters associated with this font.
If a font does not include all of the required subscript characters for an
application, and the application can substitute characters by scaling
the character of a font or by substituting characters from another font,
this parameter specifies the recommended em square for those
subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize
is set to 205, then the horizontal size for a simulated subscript
character would be 1/10th the size of the normal character.

ySubscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics
and other, the numeric sizes should be stressed. This size field maps
to the emHeight of the font being used for a subscript. The horizontal
font size specifies a font designer's recommendation for horizontal
font size of subscript characters associated with this font. If a font
does not include all of the required subscript characters for an
application, and the application can substitute characters by scaling
the characters in a font or by substituting characters from another
font, this parameter specifies the recommended horizontal EmInc for
those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize
is set to 205, then the vertical size for a simulated subscript character

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 369

would be 1/10th the size of the normal character.

ySubscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts
for this font.

Comments: The Subscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin of the font
to the character origin of the subscript's character -- for subscript
characters associated with this font. If a font does not include all of
the required subscript characters for an application, and the
application can substitute characters, this parameter specifies the
recommended horizontal position from the character escapement
point of the last character before the first subscript character. For
upright characters, this value is usually zero; however, if the
characters of a font have an incline (italic characters) the reference
point for subscript characters is usually adjusted to compensate for
the angle of incline.

ySubscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the
baseline for subscripts for this font.

Comments: The Subscript Y Offset parameter specifies a font designer's
recommended vertical offset from the character baseline to the
character baseline for subscript characters associated with this font.
Values are expressed as a positive offset below the character
baseline. If a font does not include all of the required subscript for an
application, this parameter specifies the recommended vertical
distance below the character baseline for those subscript characters.

ySuperscriptXSize

Format: 2-byte signed short

Units: Font design units

ISO/IEC FDIS 14496-22:2006(E)

370 © ISO/IEC 2006 — All rights reserved

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts
for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics
and other, the numeric sizes should be stressed. This size field maps
to the em square size of the font being used for a subscript. The
horizontal font size specifies a font designer's recommended
horizontal font size for superscript characters associated with this
font. If a font does not include all of the required superscript
characters for an application, and the application can substitute
characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the
recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and
ySuperScriptXSize is set to 205, then the horizontal size for a
simulated superscript character would be 1/10th the size of the
normal character.

ySuperscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts
for this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics
and other, the numeric sizes should be stressed. This size field maps
to the emHeight of the font being used for a subscript. The vertical
font size specifies a font designer's recommended vertical font size
for superscript characters associated with this font. If a font does not
include all of the required superscript characters for an application,
and the application can substitute characters by scaling the character
of a font or by substituting characters from another font, this
parameter specifies the recommended EmHeight for those
superscript characters.

For example, if the em square for a font is 2048 and
ySuperScriptYSize is set to 205, then the vertical size for a simulated
superscript character would be 1/10th the size of the normal
character.

ySuperscriptXOffset

Format: 2-byte signed short

Units: Font design units

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 371

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for
superscripts for this font.

Comments: The Superscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin to the
superscript character's origin for the superscript characters associated
with this font. If a font does not include all of the required superscript
characters for an application, this parameter specifies the
recommended horizontal position from the escapement point of the
character before the first superscript character. For upright characters,
this value is usually zero; however, if the characters of a font have an
incline (italic characters) the reference point for superscript characters
is usually adjusted to compensate for the angle of incline.

ySuperscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline
for superscripts for this font.

Comments: The Superscript Y Offset parameter specifies a font designer's
recommended vertical offset -- from the character baseline to the
superscript character's baseline associated with this font. Values for
this parameter are expressed as a positive offset above the character
baseline. If a font does not include all of the required superscript
characters for an application, this parameter specifies the
recommended vertical distance above the character baseline for those
superscript characters.

yStrikeoutSize

Format: 2-byte signed short

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current
font. If the size is one, the strikeout line will be the line represented by
the strikeout position field. If the value is two, the strikeout line will be
the line represented by the strikeout position and the line immediately
above the strikeout position. For a Roman font with a 2048 em
square, 102 is suggested.

ISO/IEC FDIS 14496-22:2006(E)

372 © ISO/IEC 2006 — All rights reserved

yStrikeoutPosition

Format: 2-byte signed short

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline
in font design units.

Comments: Positive values represent distances above the baseline, while
negative values represent distances below the baseline. A value of
zero falls directly on the baseline, while a value of one falls one pel
above the baseline. The value of strikeout position should not
interfere with the recognition of standard characters, and therefore
should not line up with crossbars in the font. For a Roman font with a
2048 em square, 460 is suggested.

sFamilyClass

Format: 2-byte signed short

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by
IBM to each font family. This parameter is intended for use in
selecting an alternate font when the requested font is not available.
The font class is the most general and the font subclass is the most
specific. The high byte of this field contains the family class, while the
low byte contains the family subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-
Latin character sets.

Description: This 10 byte series of numbers is used to describe the visual
characteristics of a given typeface. If provided, these characteristics
are then used to associate the font with other fonts of similar
appearance having different names; the default values should be set
to 'zero'. The variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [12] can be found in

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 373

bibliography and is maintained by Monotype Imaging Inc.

PANOSE

Type Name Description

BYTE bFamilyType; Family Type

BYTE bSerifStyle; Serif Style

BYTE bWeight; Weight

BYTE bProportion; Proportion

BYTE bContrast; Contrast

BYTE bStrokeVariation; Stroke Variation

BYTE bArmStyle; Arm Style

BYTE bLetterform; Letterform

BYTE bMidline; Midline

BYTE bXHeight; X Height

Family Type

Value Description

0 Any

1 No Fit

2 Text and Display

3 Script

4 Decorative

5 Pictorial

Serif Style

Value Description

0 Any

1 No Fit

2 Cove

ISO/IEC FDIS 14496-22:2006(E)

374 © ISO/IEC 2006 — All rights reserved

3 Obtuse Cove

4 Square Cove

5 Obtuse Square Cove

6 Square

7 Thin

8 Bone

9 Exaggerated

10 Triangle

11 Normal Sans

12 Obtuse Sans

13 Perp Sans

14 Flared

15 Rounded

Weight

Value Description

0 Any

1 No Fit

2 Very Light

3 Light

4 Thin

5 Book

6 Medium

7 Demi

8 Bold

9 Heavy

10 Black

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 375

11 Nord

Proportion

Value Description

0 Any

1 No Fit

2 Old Style

3 Modern

4 Even Width

5 Expanded

6 Condensed

7 Very Expanded

8 Very Condensed

9 Monospaced

Contrast

Value Description

0 Any

1 No Fit

2 None

3 Very Low

4 Low

5 Medium Low

6 Medium

7 Medium High

8 High

9 Very High

Stroke Variation

ISO/IEC FDIS 14496-22:2006(E)

376 © ISO/IEC 2006 — All rights reserved

Value Description

0 Any

1 No Fit

2 Gradual/Diagonal

3 Gradual/Transitional

4 Gradual/Vertical

5 Gradual/Horizontal

6 Rapid/Vertical

7 Rapid/Horizontal

8 Instant/Vertical

Arm Style

Value Description

0 Any

1 No Fit

2 Straight Arms/Horizontal

3 Straight Arms/Wedge

4 Straight Arms/Vertical

5 Straight Arms/Single Serif

6 Straight Arms/Double Serif

7 Non-Straight Arms/Horizontal

8 Non-Straight Arms/Wedge

9 Non-Straight Arms/Vertical

10 Non-Straight Arms/Single Serif

11 Non-Straight Arms/Double Serif

Letterform

Value Description

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 377

0 Any

1 No Fit

2 Normal/Contact

3 Normal/Weighted

4 Normal/Boxed

5 Normal/Flattened

6 Normal/Rounded

7 Normal/Off Center

8 Normal/Square

9 Oblique/Contact

10 Oblique/Weighted

11 Oblique/Boxed

12 Oblique/Flattened

13 Oblique/Rounded

14 Oblique/Off Center

15 Oblique/Square

Midline

Value Description

0 Any

1 No Fit

2 Standard/Trimmed

3 Standard/Pointed

4 Standard/Serifed

5 High/Trimmed

6 High/Pointed

7 High/Serifed

ISO/IEC FDIS 14496-22:2006(E)

378 © ISO/IEC 2006 — All rights reserved

8 Constant/Trimmed

9 Constant/Pointed

10 Constant/Serifed

11 Low/Trimmed

12 Low/Pointed

13 Low/Serifed

X-height

Value Description

0 Any

1 No Fit

2 Constant/Small

3 Constant/Standard

4 Constant/Large

5 Ducking/Small

6 Ducking/Standard

7 Ducking/Large

ulCharRange

Format: 16-byte unsigned long array (4 elements)

Title: Character Range

Description: This field is split conceptually into two bit fields of 96 and 32 bits each.
The low 96 bits are used to specify the Unicode blocks encompassed
by the font file. The high 32 bits are used to specify the character or
script sets that are covered by the font file. The actual bit assignments
are not yet completed; presently, all bits must be set to zero (0).

achVendID

Format: 4-byte character array

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 379

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the
company responsible for the marketing and distribution of the
typeface that is being classified. It is reasonable to assume that there
will be 6 vendors of ITC Zapf Dingbats for use on desktop platforms in
the near future (if not already). It is also likely that the vendors will
have other inherent benefits in their fonts (more kern pairs,
unregularized data, hand hinted, etc.). This identifier will allow for the
correct vendor's type to be used over another, possibly inferior, font
file. The Vendor ID value is not required.

Microsoft has assigned values for some font suppliers as listed below.
Uppercase vendor ID's are reserved by Microsoft. Other suppliers can
choose their own mixed case or lowercase ID's, or leave the field
blank.

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as
follows:

Bit # macStyle
bit C definition Description

0 bit 1 ITALIC Font contains Italic characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their
foreground and background
reversed.

3 OUTLINED Outline (hollow) characters,
otherwise they are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard
weight/style for the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0

ISO/IEC FDIS 14496-22:2006(E)

380 © ISO/IEC 2006 — All rights reserved

& 5 can be used to determine if the font was designed with these
features or whether some type of machine simulation was performed
on the font to achieve this appearance. Bits 1-4 are rarely used bits
that indicate the font is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is
undefined. As noted above, the settings of bits 0 and 1 must be
reflected in the macStyle bits in the 'head' table. While bit 6 on implies
that bits 0 and 1 of macStyle are clear (along with bits 0 and 5 of
fsSelection), the reverse is not true. Bits 0 and 1 of macStyle (and 0
and 5 of fsSelection) may be clear and that does not give any
indication of whether or not bit 6 of fsSelection is clear (e.g., Arial
Light would have all bits cleared; it is not the regular version of Arial).

usFirstCharIndex

Format: 2-byte USHORT

Description: The minimum Unicode index (character code) in this font, according
to the cmap subtable for platform ID 3 and platform- specific encoding
ID 0 or 1. For most fonts supporting Win-ANSI or other character sets,
this value would be 0x0020.

usLastCharIndex

Format: 2-byte USHORT

Description: The maximum Unicode index (character code) in this font, according
to the cmap subtable for platform ID 3 and encoding ID 0 or 1. This
value depends on which character sets the font supports.

sTypoAscender

Format: SHORT

Description: The typographic ascender for this font. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an
AFM file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in
conjunction with unitsPerEm to compute a typographically correct
default line spacing. The goal is to free applications from Macintosh or
Windows-specific metrics which are constrained by backward
compatibility requirements. These new metrics, when combined with
the character design widths, will allow applications to lay out
documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh
applications will need to access the 'sfnt' resource and parse it to
extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to
be used for vertical writing (in addition to horizontal writing), the
required value for sTypoAscender is that which describes the top of
the of the ideographic em-box. For example, if the ideographic em-

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 381

box of the font extends from coordinates 0,-120 to 1000,880 (that is, a
1000x1000 box set 120 design units below the Latin baseline), then
the value of sTypoAscender must be set to 880. Failing to adhere to
these requirements will result in incorrect vertical layout.

sTypoDescender

Format: SHORT

Description: The typographic descender for this font. Remember that this is not the
same as the Descender value in the 'hhea' table, One good source
for sTypoDescender in Latin based fonts is the Descender value from
an AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in
conjunction with unitsPerEm to compute a typographically correct
default line spacing. The goal is to free applications from Macintosh or
Windows-specific metrics which are constrained by backward
compatability requirements. These new metrics, when combined with
the character design widths, will allow applications to lay out
documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh
applications will need to access the 'sfnt' resource and parse it to
extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to
be used for vertical writing (in addition to horizontal writing), the
required value for sTypoDescender is that which describes the bottom
of the of the ideographic em-box. For example, if the ideographic em-
box of the font extends from coordinates 0,-120 to 1000,880 (that is, a
1000x1000 box set 120 design units below the Latin baseline), then
the value of sTypoDescender must be set to -120. Failing to adhere to
these requirements will result in incorrect vertical layout.

sTypoLineGap

Format: 2-byte SHORT

Description: The typographic line gap for this font. Remember that this is not the
same as the LineGap value in the 'hhea' table.

The suggested usage for usTypoLineGap is that it be used in
conjunction with unitsPerEm to compute a typographically correct
default line spacing. Typical values average 7-10% of units per em.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatability
requirements (see chapter, "Recommendations for Windows Fonts).
These new metrics, when combined with the character design widths,
will allow applications to lay out documents in a typographically
correct and portable fashion. These metrics will be exposed through
Windows APIs. Macintosh applications will need to access the 'sfnt'
resource and parse it to extract this data from the "OS/2" table.

usWinAscent

ISO/IEC FDIS 14496-22:2006(E)

382 © ISO/IEC 2006 — All rights reserved

Format: 2-byte USHORT

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it
is the same as yMax. Windows will clip the bitmap of any portion of a
glyph that appears above this value. Some applications use this value
to determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction
with unitsPerEm should be used for this purpose. Developers should
set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line
spacing using this field, for those applications that continue to use this
field for doing so (against OFF recommendations), then the value
should be set appropriately. In such a case, it may result in some
glyph bitmaps being clipped.

usWinDescent

Format: 2-byte USHORT

Description: The descender metric for Windows.. For platform 3 encoding 0 fonts,
it is the same as -yMin. Windows will clip the bitmap of any portion of
a glyph that appears below this value. Some applications use this
value to determine default line spacing. This is strongly discouraged.
The typographic ascender, descender and line gap fields in
conjunction with unitsPerEm should be used for this purpose.
Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line
spacing using this field, for those applications that continue to use this
field for doing so (against OFF recommendations), then the value
should be set appropriately. In such a case, it may result in some
glyph bitmaps being clipped.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 383

C.2 OS/2 - OS/2 and Windows Metrics (Version 1)

NOTE This is maintained for purposes of being able to validate version 1
OS/2 tables.

The OS/2 table consists of a set of metrics that are required in OFF fonts.
The layout of version 1 of this table is as follows:

Type Name of Entry Comments

USHORT version 0x0001

SHORT xAvgCharWidth

USHORT usWeightClass

USHORT usWidthClass

USHORT fsType

SHORT ySubscriptXSize

SHORT ySubscriptYSize

SHORT ySubscriptXOffset

SHORT ySubscriptYOffset

SHORT ySuperscriptXSize

SHORT ySuperscriptYSize

SHORT ySuperscriptXOffset

SHORT ySuperscriptYOffset

SHORT yStrikeoutSize

SHORT yStrikeoutPosition

SHORT sFamilyClass

BYTE panose[10]

ULONG ulUnicodeRange1 Bits 0-31

ULONG ulUnicodeRange2 Bits 32-63

ULONG ulUnicodeRange3 Bits 64-95

ULONG ulUnicodeRange4 Bits 96-127

ISO/IEC FDIS 14496-22:2006(E)

384 © ISO/IEC 2006 — All rights reserved

CHAR achVendID[4]

USHORT fsSelection

USHORT usFirstCharIndex

USHORT usLastCharIndex

SHORT sTypoAscender

SHORT sTypoDescender

SHORT sTypoLineGap

USHORT usWinAscent

USHORT usWinDescent

ULONG ulCodePageRange1 Bits 0-31

ULONG ulCodePageRange2 Bits 32-63

version

Format: 2-byte unsigned short

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and
layout for the OS/2 table. The version number for this layout is one (1).
The version number for the previous layout (in rev.1.5 of this spec and
earlier) was zero (0). Version 0 of the OS/2 table was 78 bytes; Version 1
is 86 bytes, having added the ulCodePageRange1 and
ulCodePageRange2 fields.

xAvgCharWidth

Format: 2-byte signed short

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average
of the escapement (width) of all of the 26 lowercase letters a through z of
the Latin alphabet and the space character. If any of the 26 lowercase
letters are not present, this parameter should equal the weighted average

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 385

of all glyphs in the font. For non-UGL (platform 3, encoding 0) fonts, use
the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the
spacing of characters for comparing one font to another for selection or
substitution. For proportionally spaced fonts, this value is useful in
estimating the length for lines of text. The weighting factors provided with
this example are only valid for Latin lowercase letters. If other character
sets, or capital letters are used, the corresponding frequency of use
values should be used. One needs to be careful when comparing fonts
that use different frequency of use values for font mapping. The average
character width for the following set of upper and lowercase letters only, is
calculated according to this formula: Sum the individual character widths
multiplied by the following weighting factors and then divide by 1000. For
example:

Letter
Weight
Factor

Letter
Weight
Factor

a 64 O 56

b 14 P 17

c 27 Q 4

d 35 R 49

e 100 S 56

f 20 T 71

g 14 U 31

h 42 V 10

i 63 W 18

j 3 X 3

k 6 Y 18

l 35 Z 2

m 20 space 166

n 56

usWeightClass

Format: 2-byte unsigned short

Title: Weight class.

ISO/IEC FDIS 14496-22:2006(E)

386 © ISO/IEC 2006 — All rights reserved

Description: Indicates the visual weight (degree of blackness or thickness of strokes)
of the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: 2-byte unsigned short

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height
ratio) as specified by a font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect
ratio, each character in a font of normal width has a relative aspect ratio of
one. When a new type style is created of a different width class (either by
a font designer or by some automated means) the relative aspect ratio of
the characters in the new font is some percentage greater or less than
those same characters in the normal font -- it is this difference that this
parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 387

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: 2-byte unsigned short

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts
may be stored in a document. When a document with embedded fonts is
opened on a system that does not have the font installed (the remote
system), the embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-aware
application. Embedding licensing rights are granted by the vendor of the
font.

The Font Embedding DLL Specification and DLL release notes
describe the APIs used to implement support for OFF font embedding and
loading. Applications that implement support for font embedding, either
through use of the Font Embedding DLL or through other means, must not
embed fonts which are not licensed to permit embedding. Further,
applications loading embedded fonts for temporary use (see Preview &
Print and Editable embedding below) must delete the fonts when the
document containing the embedded font is closed.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus fsType
is zero.
Fonts with this setting indicate that they may be
embedded and permanently installed on the remote
system by an application. The user of the remote system
acquires the identical rights, obligations and licenses for
that font as the original purchaser of the font, and is
subject to the same end-user license agreement,
copyright, design patent, and/or trademark as was the
original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified,
embedded or exchanged in any manner without first
obtaining permission of the legal owner.
Caution: For Restricted License embedding to take effect,
it must be the only level of embedding selected.

ISO/IEC FDIS 14496-22:2006(E)

388 © ISO/IEC 2006 — All rights reserved

2 0x0004 Preview & Print embedding: When this bit is set, the font
may be embedded, and temporarily loaded on the remote
system. Documents containing Preview & Print fonts must
be opened "read-only;" no edits can be applied to the
document.

3 0x0008 Editable embedding: When this bit is set, the font may be
embedded but must only be installed temporarily on
other systems. In contrast to Preview & Print fonts,
documents containing Editable fonts may be opened for
reading, editing is permitted, and changes may be saved.

4-15 Reserved, must be zero.

Comments: If multiple embedding bits are set, the least restrictive license granted
takes precedence. For example, if bits 1 and 3 are set, bit 3 takes
precedence over bit 1and the font may be embedded with Editable rights.
For compatibility purposes, most vendors granting Editable embedding
rights are also setting the Preview & Print bit (0x000C). This will permit an
application that only supports Preview & Print embedding to detect that
font embedding is allowed.

 Restricted License embedding (0x0002): Fonts that have this bit set
must not be modified, embedded or exchanged in any manner without
first obtaining permission of the legal owner. Caution:

NOTE For Restricted License embedding to take effect, it
must be the only level of embedding selected (as noted in the
previous paragraph).

 Preview & Print embedding (0x0004): Fonts with this bit set indicate that
they may be embedded within documents but must only be installed
temporarily on the remote system. Any document which includes a
Preview & Print embedded font must be opened “read-only;” the
application must not allow the user to edit the document; it can only be
viewed and/or printed.

 Editable embedding (0x0008): Fonts with this bit set indicate that they
may be embedded in documents, but must only be installed temporarily on
the remote system. In contrast to Preview & Print fonts, documents
containing Editable fonts may be opened “read-write;” editing is permitted,
and changes may be saved.

 Installable embedding (0x0000): Fonts with this setting indicate that they
may be embedded and permanently installed on the remote system by an
application. The user of the remote system acquires the identical rights,
obligations and licenses for that font as the original purchaser of the font,
and is subject to the same end-user license agreement, copyright, design
patent, and/or trademark as was the original purchaser.

ySubscriptXSize

Format: 2-byte signed short

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 389

Units: Font design units

Title: Subscript horizontal font size.

Description:
The recommended horizontal size in font design units for subscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the character of a font or by
substituting characters from another font, this parameter specifies the
recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is
set to 205, then the horizontal size for a simulated subscript character
would be 1/10th the size of the normal character.

ySubscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this
font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The horizontal font size
specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the characters in a font or by
substituting characters from another font, this parameter specifies the
recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is
set to 205, then the vertical size for a simulated subscript character would
be 1/10th the size of the normal character.

ySubscriptXOffset

Format: 2-byte signed short

Units: Font design units

ISO/IEC FDIS 14496-22:2006(E)

390 © ISO/IEC 2006 — All rights reserved

Title: Subscript x offset.

Description: The recommended horizontal offset in font design untis for subscripts for
this font.

Comments: The Subscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin of the font to
the character origin of the subscript's character -- for subscript characters
associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute
characters, this parameter specifies the recommended horizontal position
from the character escapement point of the last character before the first
subscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for subscript characters is usually adjusted to compensate
for the angle of incline.

ySubscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
subscripts for this font.

Comments: The Subscript Y Offset parameter specifies a font designer's
recommended vertical offset from the character baseline to the character
baseline for subscript characters associated with this font. Values are
expressed as a positive offset below the character baseline. If a font does
not include all of the required subscript for an application, this parameter
specifies the recommended vertical distance below the character baseline
for those subscript characters.

ySuperscriptXSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for
superscript characters associated with this font. If a font does not include
all of the required superscript characters for an application, and the

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 391

application can substitute characters by scaling the character of a font or
by substituting characters from another font, this parameter specifies the
recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is
set to 205, then the horizontal size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The vertical font size
specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can
substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended
EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is
set to 205, then the vertical size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for
this font.

Comments: The Superscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin to the
superscript character's origin for the superscript characters associated with
this font. If a font does not include all of the required superscript characters
for an application, this parameter specifies the recommended horizontal
position from the escapement point of the character before the first
superscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for superscript characters is usually adjusted to

ISO/IEC FDIS 14496-22:2006(E)

392 © ISO/IEC 2006 — All rights reserved

compensate for the angle of incline.

ySuperscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
superscripts for this font.

Comments: The Superscript Y Offset parameter specifies a font designer's
recommended vertical offset -- from the character baseline to the
superscript character's baseline associated with this font. Values for this
parameter are expressed as a positive offset above the character baseline.
If a font does not include all of the required superscript characters for an
application, this parameter specifies the recommended vertical distance
above the character baseline for those superscript characters.

yStrikeoutSize

Format: 2-byte signed short

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font.
If the size is one, the strikeout line will be the line represented by the
strikeout position field. If the value is two, the strikeout line will be the line
represented by the strikeout position and the line immediately above the
strikeout position. For a Roman font with a 2048 em square, 102 is
suggested.

yStrikeoutPosition

Format: 2-byte signed short

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in
font design units.

Comments: Positive values represent distances above the baseline, while negative
values represent distances below the baseline. A value of zero falls

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 393

directly on the baseline, while a value of one falls one pel above the
baseline. The value of strikeout position should not interfere with the
recognition of standard characters, and therefore should not line up with
crossbars in the font. For a Roman font with a 2048 em square, 460 is
suggested.

sFamilyClass

Format: 2-byte signed short

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM to
each font family. This parameter is intended for use in selecting an
alternate font when the requested font is not available. The font class is
the most general and the font subclass is the most specific. The high byte
of this field contains the family class, while the low byte contains the
family subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin
character sets.

Description: This 10 byte series of numbers is used to describe the visual
characteristics of a given typeface. If provided, these characteristics are
then used to associate the font with other fonts of similar appearance
having different names; the default values should be set to 'zero'. The
variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [12] can be found in
bibliography and is maintained by Monotype Imaging Inc.

PANOSE

Type Name Description

BYTE bFamilyType; Family Type

BYTE bSerifStyle; Serif Style

BYTE bWeight; Weight

BYTE bProportion; Proportion

ISO/IEC FDIS 14496-22:2006(E)

394 © ISO/IEC 2006 — All rights reserved

BYTE bContrast; Contrast

BYTE bStrokeVariation; Stroke Variation

BYTE bArmStyle; Arm Style

BYTE bLetterform; Letterform

BYTE bMidline; Midline

BYTE bXHeight; X Height

Family Type

Value Description

0 Any

1 No Fit

2 Text and Display

3 Script

4 Decorative

5 Pictorial

Serif Style

Value Description

0 Any

1 No Fit

2 Cove

3 Obtuse Cove

4 Square Cove

5 Obtuse Square Cove

6 Square

7 Thin

8 Bone

9 Exaggerated

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 395

10 Triangle

11 Normal Sans

12 Obtuse Sans

13 Perp Sans

14 Flared

15 Rounded

Weight

Value Description

0 Any

1 No Fit

2 Very Light

3 Light

4 Thin

5 Book

6 Medium

7 Demi

8 Bold

9 Heavy

10 Black

11 Nord

Proportion

Value Description

0 Any

1 No Fit

2 Old Style

3 Modern

ISO/IEC FDIS 14496-22:2006(E)

396 © ISO/IEC 2006 — All rights reserved

4 Even Width

5 Expanded

6 Condensed

7 Very Expanded

8 Very Condensed

9 Monospaced

Contrast

Value Description

0 Any

1 No Fit

2 None

3 Very Low

4 Low

5 Medium Low

6 Medium

7 Medium High

8 High

9 Very High

Stroke Variation

Value Description

0 Any

1 No Fit

2 Gradual/Diagonal

3 Gradual/Transitional

4 Gradual/Vertical

5 Gradual/Horizontal

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 397

6 Rapid/Vertical

7 Rapid/Horizontal

8 Instant/Vertical

Arm Style

Value Description

0 Any

1 No Fit

2 Straight Arms/Horizontal

3 Straight Arms/Wedge

4 Straight Arms/Vertical

5 Straight Arms/Single Serif

6 Straight Arms/Double Serif

7 Non-Straight Arms/Horizontal

8 Non-Straight Arms/Wedge

9 Non-Straight Arms/Vertical

10 Non-Straight Arms/Single Serif

11 Non-Straight Arms/Double Serif

Letterform

Value Description

0 Any

1 No Fit

2 Normal/Contact

3 Normal/Weighted

4 Normal/Boxed

5 Normal/Flattened

6 Normal/Rounded

ISO/IEC FDIS 14496-22:2006(E)

398 © ISO/IEC 2006 — All rights reserved

7 Normal/Off Center

8 Normal/Square

9 Oblique/Contact

10 Oblique/Weighted

11 Oblique/Boxed

12 Oblique/Flattened

13 Oblique/Rounded

14 Oblique/Off Center

15 Oblique/Square

Midline

Value Description

0 Any

1 No Fit

2 Standard/Trimmed

3 Standard/Pointed

4 Standard/Serifed

5 High/Trimmed

6 High/Pointed

7 High/Serifed

8 Constant/Trimmed

9 Constant/Pointed

10 Constant/Serifed

11 Low/Trimmed

12 Low/Pointed

13 Low/Serifed

X-height

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 399

Value Description

0 Any

1 No Fit

2 Constant/Small

3 Constant/Standard

4 Constant/Large

5 Ducking/Small

6 Ducking/Standard

7 Ducking/Large

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed
by the font file in the 'cmap' subtable for platform 3, encoding ID 1
(Microsoft platform). If the bit is set (1) then the Unicode range is
considered functional. If the bit is clear (0) then the range is not
considered functional. Each of the bits is treated as an independent flag
and the bits can be set in any combination. The determination of
"functional" is left up to the font designer, although character set selection
should attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See the
Basic Multilingual Plane of ISO/IEC 10646 or the Unicode Standard for
the list of Unicode ranges and characters.

Bit Description

0 Basic Latin

1 Latin-1 Supplement

2 Latin Extended-A

3 Latin Extended-B

4 IPA Extensions

ISO/IEC FDIS 14496-22:2006(E)

400 © ISO/IEC 2006 — All rights reserved

5 Spacing Modifier Letters

6 Combining Diacritical Marks

7 Basic Greek

8 Greek Symbols and Coptic

9 Cyrillic

10 Armenian

11 Basic Hebrew

12 Hebrew Extended (A and B blocks combined)

13 Basic Arabic

14 Arabic Extended

15 Devanagari

16 Bengali

17 Gurmukhi

18 Gujarati

19 Oriya

20 Tamil

21 Telugu

22 Kannada

23 Malayalam

24 Thai

25 Lao

26 Basic Georgian

27 Georgian Extended

28 Hangul Jamo

29 Latin Extended Additional

30 Greek Extended

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 401

31 General Punctuation

32 Superscripts And Subscripts

33 Currency Symbols

34 Combining Diacritical Marks For Symbols

35 Letterlike Symbols

36 Number Forms

37 Arrows

38 Mathematical Operators

39 Miscellaneous Technical

40 Control Pictures

41 Optical Character Recognition

42 Enclosed Alphanumerics

43 Box Drawing

44 Block Elements

45 Geometric Shapes

46 Miscellaneous Symbols

47 Dingbats

48 CJK Symbols And Punctuation

49 Hiragana

50 Katakana

51 Bopomofo

52 Hangul Compatibility Jamo

53 CJK Miscellaneous

54 Enclosed CJK Letters And Months

55 CJK Compatibility

56 Hangul

ISO/IEC FDIS 14496-22:2006(E)

402 © ISO/IEC 2006 — All rights reserved

57 Reserved for Unicode SubRanges

58 Reserved for Unicode SubRanges

59 CJK Unified Ideographs

60 Private Use Area

61 CJK Compatibility Ideographs

62 Alphabetic Presentation Forms

63 Arabic Presentation Forms-A

64 Combining Half Marks

65 CJK Compatibility Forms

66 Small Form Variants

67 Arabic Presentation Forms-B

68 Halfwidth And Fullwidth Forms

69 Specials

70-127 Reserved for Unicode SubRanges

achVendID

Format: 4-byte character array

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company
responsible for the marketing and distribution of the typeface that is being
classified. It is reasonable to assume that there will be 6 vendors of ITC
Zapf Dingbats for use on desktop platforms in the near future (if not
already). It is also likely that the vendors will have other inherent benefits
in their fonts (more kern pairs, unregularized data, hand hinted, etc.). This
identifier will allow for the correct vendor's type to be used over another,
possibly inferior, font file. The Vendor ID value is not required.

Microsoft has assigned values for some font suppliers as listed below.
Uppercase vendor ID's are reserved by Microsoft. Other suppliers can
choose their own mixed case or lowercase ID's, or leave the field blank.

fsSelection

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 403

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as
follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and
background reversed.

3 OUTLINED Outline (hollow) characters, otherwise
they are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard
weight/style for the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5
can be used to determine if the font was designed with these features or
whether some type of machine simulation was performed on the font to
achieve this appearance. Bits 1-4 are rarely used bits that indicate the font
is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is
undefined. As noted above, the settings of bits 0 and 1 must be reflected
in the macStyle bits in the 'head' table. While bit 6 on implies that bits 0
and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection)
may be clear and that does not give any indication of whether or not bit 6
of fsSelection is clear (e.g., Arial Light would have all bits cleared; it is not
the regular version of Arial).

usFirstCharIndex

Format: 2-byte USHORT

Description: The minimum Unicode index (character code) in this font, according to the
cmap subtable for platform ID 3 and platform- specific encoding ID 0 or 1.
For most fonts supporting Win-ANSI or other character sets, this value
would be 0x0020.

ISO/IEC FDIS 14496-22:2006(E)

404 © ISO/IEC 2006 — All rights reserved

usLastCharIndex

Format: 2-byte USHORT

Description: The maximum Unicode index (character code) in this font, according to
the cmap subtable for platform ID 3 and encoding ID 0 or 1. This value
depends on which character sets the font supports.

sTypoAscender

Format: SHORT

Description: The typographic ascender for this font. Remember that this is not the
same as the Ascender value in the 'hhea' table. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an AFM
file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatibility requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoAscender is that which describes the top of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoAscender must be set to 880. Failing to adhere to these
requirements will result in incorrect vertical layout.

sTypoDescender

Format: SHORT

Description: The typographic descender for this font. Remember that this is not the
same as the Descender value in the 'hhea' table One good source for
sTypoDescender in Latin based fonts is the Descender value from an
AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatability requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table
For CJK (Chinese, Japanese, and Korean) fonts that are intended to be

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 405

used for vertical writing (in addition to horizontal writing), the required
value for sTypoDescender is that which describes the bottom of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoDescender must be set to -120. Failing to adhere to these
requirements will result in incorrect vertical layout.

sTypoLineGap

Format: 2-byte SHORT

Description: The typographic line gap for this font. Remember that this is not the same
as the LineGap value in the 'hhea' table,.

The suggested usage for usTypoLineGap is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
Typical values average 7-10% of units per em. The goal is to free
applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see chapter,
"Recommendations for Windows Fonts). These new metrics, when
combined with the character design widths, will allow applications to lay
out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications
will need to access the 'sfnt' resource and parse it to extract this data from
the "OS/2" table

usWinAscent

Format: 2-byte USHORT

Description: The ascender metric for Windows. For platform 3 encoding 0 fonts, it is
the same as yMax. Windows will clip the bitmap of any portion of a glyph
that appears above this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

usWinDescent

Format: 2-byte USHORT

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is
the same as -yMin. Windows will clip the bitmap of any portion of a glyph
that appears below this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with

ISO/IEC FDIS 14496-22:2006(E)

406 © ISO/IEC 2006 — All rights reserved

unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long(2 copies) totaling 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file
in the 'cmap' subtable for platform 3, encoding ID 1 (Microsoft platform). If
the font file is encoding ID 0, then the Symbol Character Set bit should be
set. If the bit is set (1) then the code page is considered functional. If the
bit is clear (0) then the code page is not considered functional. Each of the
bits is treated as an independent flag and the bits can be set in any
combination. The determination of "functional" is left up to the font
designer, although character set selection should attempt to be functional
by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is
set, and the font file contains a 'cmap' subtable for platform of 3 and
encoding ID of 1, then all of the characters in the Unicode range 0xF000 -
0xF0FF (inclusive) will be used to enumerate the symbol character set. If
the bit is not set, any characters present in that range will not be
enumerated as a symbol character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 407

8-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and
Singapore

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and
Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-47 Reserved for OEM

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

ISO/IEC FDIS 14496-22:2006(E)

408 © ISO/IEC 2006 — All rights reserved

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 409

C.3 OS/2 - OS/2 and Windows Metrics (Version 2)

NOTE This is maintained for purposes of being able to validate version 2
OS/2 tables.

The OS/2 table consists of a set of metrics that are required in OFF fonts.
There are two versions of this table, the second version having five
additional fields: sxHeight, sCapHeight, usDefaultChar, usBreakChar,
usMaxContext. The layout of version 2 of this table is as follows:

Type Name of Entry Comments

USHORT version 0x0002

SHORT xAvgCharWidth

USHORT usWeightClass

USHORT usWidthClass

USHORT fsType

SHORT ySubscriptXSize

SHORT ySubscriptYSize

SHORT ySubscriptXOffset

SHORT ySubscriptYOffset

SHORT ySuperscriptXSize

SHORT ySuperscriptYSize

SHORT ySuperscriptXOffset

SHORT ySuperscriptYOffset

SHORT yStrikeoutSize

SHORT yStrikeoutPosition

SHORT sFamilyClass

BYTE panose[10]

ULONG ulUnicodeRange1 Bits 0-31

ULONG ulUnicodeRange2 Bits 32-63

ULONG ulUnicodeRange3 Bits 64-95

ISO/IEC FDIS 14496-22:2006(E)

410 © ISO/IEC 2006 — All rights reserved

ULONG ulUnicodeRange4 Bits 96-127

CHAR achVendID[4]

USHORT fsSelection

USHORT usFirstCharIndex

USHORT usLastCharIndex

SHORT sTypoAscender

SHORT sTypoDescender

SHORT sTypoLineGap

USHORT usWinAscent

USHORT usWinDescent

ULONG ulCodePageRange1 Bits 0-31

ULONG ulCodePageRange2 Bits 32-63

SHORT sxHeight

SHORT sCapHeight

USHORT usDefaultChar

USHORT usBreakChar

USHORT usMaxContext

version

Format: 2-byte unsigned short

Units: n/a

Title: OS/2 table version number.

Description: The version number for this OS/2 table.

Comments: The version number allows for identification of the precise contents and
layout for the OS/2 table. The version number for this layout is two (2).
Versions one (1) and zero (0) have been used previously, in rev.1.66 and
1.5, respectively, of the TrueType specification.

xAvgCharWidth

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 411

Format: 2-byte signed short

Units: Pels / em units

Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average
of the escapement (width) of all of the 26 lowercase letters a through z of
the Latin alphabet and the space character. If any of the 26 lowercase
letters are not present, this parameter should equal the weighted average
of all glyphs in the font. For non-UGL (platform 3, encoding 0) fonts, use
the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the
spacing of characters for comparing one font to another for selection or
substitution. For proportionally spaced fonts, this value is useful in
estimating the length for lines of text. The weighting factors provided with
this example are only valid for Latin lowercase letters. If other character
sets, or capital letters are used, the corresponding frequency of use
values should be used. One needs to be careful when comparing fonts
that use different frequency of use values for font mapping. The average
character width for the following set of upper and lowercase letters only, is
calculated according to this formula: Sum the individual character widths
multiplied by the following weighting factors and then divide by 1000. For
example:

Letter
Weight
Factor

Letter
Weight
Factor

a 64 o 56

b 14 p 17

c 27 q 4

d 35 r 49

e 100 s 56

f 20 t 71

g 14 u 31

h 42 v 10

i 63 w 18

j 3 x 3

k 6 y 18

l 35 z 2

ISO/IEC FDIS 14496-22:2006(E)

412 © ISO/IEC 2006 — All rights reserved

m 20 space 166

n 56

usWeightClass

Format: 2-byte unsigned short

Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes)
of the characters in the font.

Comments:

Value Description C Definition (from windows.h)

100 Thin FW_THIN

200 Extra-light (Ultra-light) FW_EXTRALIGHT

300 Light FW_LIGHT

400 Normal (Regular) FW_NORMAL

500 Medium FW_MEDIUM

600 Semi-bold (Demi-bold) FW_SEMIBOLD

700 Bold FW_BOLD

800 Extra-bold (Ultra-bold) FW_EXTRABOLD

900 Black (Heavy) FW_BLACK

usWidthClass

Format: 2-byte unsigned short

Title: Width class.

Description: Indicates a relative change from the normal aspect ratio (width to height
ratio) as specified by a font designer for the glyphs in a font.

Comments: Although every character in a font may have a different numeric aspect
ratio, each character in a font of normal width has a relative aspect ratio of
one. When a new type style is created of a different width class (either by
a font designer or by some automated means) the relative aspect ratio of
the characters in the new font is some percentage greater or less than
those same characters in the normal font -- it is this difference that this

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 413

parameter specifies.

Value Description C Definition % of normal

1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50

2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5

3 Condensed FWIDTH_CONDENSED 75

4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5

5 Medium (normal) FWIDTH_NORMAL 100

6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5

7 Expanded FWIDTH_EXPANDED 125

8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150

9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: 2-byte unsigned short

Title: Type flags.

Description: Indicates font embedding licensing rights for the font. Embeddable fonts
may be stored in a document. When a document with embedded fonts is
opened on a system that does not have the font installed (the remote
system), the embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-aware
application. Embedding licensing rights are granted by the vendor of the
font.

The Font Embedding DLL Specification and DLL release notes
describe the APIs used to implement support for OFF font embedding and
loading. Applications that implement support for font embedding, either
through use of the Font Embedding DLL or through other means, must not
embed fonts which are not licensed to permit embedding. Further,
applications loading embedded fonts for temporary use (see Preview &
Print and Editable embedding below) must delete the fonts when the
document containing the embedded font is closed.

Bit Bit Mask Description

 0x0000 Installable Embedding: No fsType bit is set. Thus fsType
is zero.
Fonts with this setting indicate that they may be
embedded and permanently installed on the remote
system by an application. The user of the remote system
acquires the identical rights, obligations and licenses for

ISO/IEC FDIS 14496-22:2006(E)

414 © ISO/IEC 2006 — All rights reserved

that font as the original purchaser of the font, and is
subject to the same end-user license agreement,
copyright, design patent, and/or trademark as was the
original purchaser.

0 0x0001 Reserved, must be zero.

1 0x0002 Restricted License embedding:
Fonts that have only this bit set must not be modified,
embedded or exchanged in any manner without first
obtaining permission of the legal owner.
Caution: For Restricted License embedding to take effect,
it must be the only level of embedding selected.

2 0x0004 Preview & Print embedding: When this bit is set, the font
may be embedded, and temporarily loaded on the remote
system. Documents containing Preview & Print fonts must
be opened "read-only;" no edits can be applied to the
document.

3 0x0008 Editable embedding: When this bit is set, the font may be
embedded but must only be installed temporarily on
other systems. In contrast to Preview & Print fonts,
documents containing Editable fonts may be opened for
reading, editing is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be
subsetted prior to embedding. Other embedding
restrictions specified in the lower byte also apply.

9 0x0200 Bitmap embedding only: When this bit is set, only bitmaps
contained in the font may be embedded. No outline data
may be embedded. If there are no bitmaps available in the
font, then the font is considered unembeddable and the
embedding services will fail. Other embedding restrictions
specified in the lower byte also apply.

10-15 Reserved, must be zero.

Comments: If multiple embedding bits are set, the least restrictive license granted
takes precedence. For example, if bits 1 and 3 are set, bit 3 takes
precedence over bit 1and the font may be embedded with Editable rights.
For compatibility purposes, most vendors granting Editable embedding
rights are also setting the Preview & Print bit (0x000C). This will permit an
application that only supports Preview & Print embedding to detect that
font embedding is allowed.

ySubscriptXSize

Format: 2-byte signed short

Units: Font design units

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 415

Title: Subscript horizontal font size.

Description:
The recommended horizontal size in font design units for subscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the character of a font or by
substituting characters from another font, this parameter specifies the
recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is
set to 205, then the horizontal size for a simulated subscript character
would be 1/10th the size of the normal character.

ySubscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Subscript vertical font size.

Description: The recommended vertical size in font design units for subscripts for this
font.

Comments: If a font has two recommended sizes for subscripts, e.g. numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The horizontal font size
specifies a font designer's recommendation for horizontal font size of
subscript characters associated with this font. If a font does not include all
of the required subscript characters for an application, and the application
can substitute characters by scaling the characters in a font or by
substituting characters from another font, this parameter specifies the
recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is
set to 205, then the vertical size for a simulated subscript character would
be 1/10th the size of the normal character.

ySubscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript x offset.

ISO/IEC FDIS 14496-22:2006(E)

416 © ISO/IEC 2006 — All rights reserved

Description: The recommended horizontal offset in font design untis for subscripts for
this font.

Comments: The Subscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin of the font to
the character origin of the subscript's character -- for subscript characters
associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute
characters, this parameter specifies the recommended horizontal position
from the character escapement point of the last character before the first
subscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for subscript characters is usually adjusted to compensate
for the angle of incline.

ySubscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
subscripts for this font.

Comments: The Subscript Y Offset parameter specifies a font designer's
recommended vertical offset from the character baseline to the character
baseline for subscript characters associated with this font. Values are
expressed as a positive offset below the character baseline. If a font does
not include all of the required subscript for an application, this parameter
specifies the recommended vertical distance below the character baseline
for those subscript characters.

ySuperscriptXSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript horizontal font size.

Description: The recommended horizontal size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
em square size of the font being used for a subscript. The horizontal font
size specifies a font designer's recommended horizontal font size for
superscript characters associated with this font. If a font does not include
all of the required superscript characters for an application, and the
application can substitute characters by scaling the character of a font or
by substituting characters from another font, this parameter specifies the

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 417

recommended em square for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptXSize is
set to 205, then the horizontal size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptYSize

Format: 2-byte signed short

Units: Font design units

Title: Superscript vertical font size.

Description: The recommended vertical size in font design units for superscripts for
this font.

Comments: If a font has two recommended sizes for subscripts, e.g., numerics and
other, the numeric sizes should be stressed. This size field maps to the
emHeight of the font being used for a subscript. The vertical font size
specifies a font designer's recommended vertical font size for superscript
characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can
substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended
EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is
set to 205, then the vertical size for a simulated superscript character
would be 1/10th the size of the normal character.

ySuperscriptXOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript x offset.

Description: The recommended horizontal offset in font design units for superscripts for
this font.

Comments: The Superscript X Offset parameter specifies a font designer's
recommended horizontal offset -- from the character origin to the
superscript character's origin for the superscript characters associated with
this font. If a font does not include all of the required superscript characters
for an application, this parameter specifies the recommended horizontal
position from the escapement point of the character before the first
superscript character. For upright characters, this value is usually zero;
however, if the characters of a font have an incline (italic characters) the
reference point for superscript characters is usually adjusted to
compensate for the angle of incline.

ISO/IEC FDIS 14496-22:2006(E)

418 © ISO/IEC 2006 — All rights reserved

ySuperscriptYOffset

Format: 2-byte signed short

Units: Font design units

Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for
superscripts for this font.

Comments: The Superscript Y Offset parameter specifies a font designer's
recommended vertical offset -- from the character baseline to the
superscript character's baseline associated with this font. Values for this
parameter are expressed as a positive offset above the character baseline.
If a font does not include all of the required superscript characters for an
application, this parameter specifies the recommended vertical distance
above the character baseline for those superscript characters.

yStrikeoutSize

Format: 2-byte signed short

Units: Font design units

Title: Strikeout size.

Description: Width of the strikeout stroke in font design units.

Comments: This field should normally be the width of the em dash for the current font.
If the size is one, the strikeout line will be the line represented by the
strikeout position field. If the value is two, the strikeout line will be the line
represented by the strikeout position and the line immediately above the
strikeout position. For a Roman font with a 2048 em square, 102 is
suggested.

yStrikeoutPosition

Format: 2-byte signed short

Units: Font design units

Title: Strikeout position.

Description: The position of the top of the strikeout stroke relative to the baseline in
font design units.

Comments: Positive values represent distances above the baseline, while negative
values represent distances below the baseline. A value of zero falls
directly on the baseline, while a value of one falls one pel above the
baseline. The value of strikeout position should not interfere with the

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 419

recognition of standard characters, and therefore should not line up with
crossbars in the font. For a Roman font with a 2048 em square, 460 is
suggested.

sFamilyClass

Format: 2-byte signed short

Title: Font-family class and subclass.

Description: This parameter is a classification of font-family design.

Comments: The font class and font subclass are registered values assigned by IBM to
each font family. This parameter is intended for use in selecting an
alternate font when the requested font is not available. The font class is
the most general and the font subclass is the most specific. The high byte
of this field contains the family class, while the low byte contains the
family subclass.

Panose

Format: 10 byte array

Title: PANOSE classification number

International: Additional specifications are required for PANOSE to classify non-Latin
character sets.

Description: This 10 byte series of numbers is used to describe the visual
characteristics of a given typeface. If provided, these characteristics are
then used to associate the font with other fonts of similar appearance
having different names; the default values should be set to 'zero'. The
variables for each digit are listed below.

Comments: The specification for assigning PANOSE values [12] can be found in
bibliography and is maintained by Monotype Imaging Inc.

Type Name

BYTE bFamilyType;

BYTE bSerifStyle;

BYTE bWeight;

BYTE bProportion;

BYTE bContrast;

BYTE bStrokeVariation;

ISO/IEC FDIS 14496-22:2006(E)

420 © ISO/IEC 2006 — All rights reserved

BYTE bArmStyle;

BYTE bLetterform;

BYTE bMidline;

BYTE bXHeight;

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.

Title: Unicode Character Range

Description: This field is used to specify the Unicode blocks or ranges encompassed
by the font file in the 'cmap' subtable for platform 3, encoding ID 1
(Microsoft platform). If the bit is set (1) then the Unicode range is
considered functional. If the bit is clear (0) then the range is not
considered functional. Each of the bits is treated as an independent flag
and the bits can be set in any combination. The determination of
"functional" is left up to the font designer, although character set selection
should attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See the
Basic Multilingual Plane of ISO/IEC 10646 or the Unicode Standard for
the list of Unicode ranges and characters.

Bit Description

0 Basic Latin

1 Latin-1 Supplement

2 Latin Extended-A

3 Latin Extended-B

4 IPA Extensions

5 Spacing Modifier Letters

6 Combining Diacritical Marks

7 Greek

8 Reserved for Unicode SubRanges

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 421

9 Cyrillic

10 Armenian

11 Hebrew

12 Reserved for Unicode SubRanges

13 Arabic

14 Reserved for Unicode SubRanges

15 Devanagari

16 Bengali

17 Gurmukhi

18 Gujarati

19 Oriya

20 Tamil

21 Telugu

22 Kannada

23 Malayalam

24 Thai

25 Lao

26 Georgian

27 Reserved for Unicode SubRanges

28 Hangul Jamo

29 Latin Extended Additional

30 Greek Extended

31 General Punctuation

32 Superscripts And Subscripts

33 Currency Symbols

34 Combining Diacritical Marks For Symbols

ISO/IEC FDIS 14496-22:2006(E)

422 © ISO/IEC 2006 — All rights reserved

35 Letterlike Symbols

36 Number Forms

37 Arrows

38 Mathematical Operators

39 Miscellaneous Technical

40 Control Pictures

41 Optical Character Recognition

42 Enclosed Alphanumerics

43 Box Drawing

44 Block Elements

45 Geometric Shapes

46 Miscellaneous Symbols

47 Dingbats

48 CJK Symbols And Punctuation

49 Hiragana

50 Katakana

51 Bopomofo

 Extended Bopomofo

52 Hangul Compatibility Jamo

53 CJK Miscellaneous

54 Enclosed CJK Letters And Months

55 CJK Compatibility

56 Hangul

57 Surrogates *

58 Reserved for Unicode SubRanges

59 CJK Unified Ideographs

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 423

 CJK Radicals Supplement

 Kangxi Radicals

 Ideographic Description

 CJK Unified Ideograph Extension A

60 Private Use Area

61 CJK Compatibility Ideographs

62 Alphabetic Presentation Forms

63 Arabic Presentation Forms-A

64 Combining Half Marks

65 CJK Compatibility Forms

66 Small Form Variants

67 Arabic Presentation Forms-B

68 Halfwidth And Fullwidth Forms

69 Specials

70 Tibetan

71 Syriac

72 Thaana

73 Sinhala

74 Myanmar

75 Ethiopic

76 Cherokee

77 Unified Canadian Syllabics

78 Ogham

79 Runic

80 Khmer

81 Mongolian

ISO/IEC FDIS 14496-22:2006(E)

424 © ISO/IEC 2006 — All rights reserved

82 Braille

83 Yi

 Yi Radicals

84-127 Reserved for Unicode SubRanges

NOTE * Setting bit 57 implies that there is atleast one codepoint beyond the
Basic Multilingual Plane that is supported by this font.

achVendID

Format: 4-byte character array

Title: Font Vendor Identification

Description: The four character identifier for the vendor of the given type face.

Comments: This is not the royalty owner of the original artwork. This is the company
responsible for the marketing and distribution of the typeface that is being
classified. It is reasonable to assume that there will be 6 vendors of ITC
Zapf Dingbats for use on desktop platforms in the near future (if not
already). It is also likely that the vendors will have other inherent benefits
in their fonts (more kern pairs, unregularized data, hand hinted, etc.). This
identifier will allow for the correct vendor's type to be used over another,
possibly inferior, font file. The Vendor ID value is not required.

Microsoft has assigned values for some font suppliers as listed below.
Uppercase vendor ID's are reserved by Microsoft. Other suppliers can
choose their own mixed case or lowercase ID's, or leave the field blank.

For a list of registered Vendor id's see the Registered 'vendors' links
page.

fsSelection

Format: 2-byte bit field.

Title: Font selection flags.

Description: Contains information concerning the nature of the font patterns, as
follows:

Bit # macStyle bit C definition Description

0 bit 1 ITALIC Font contains Italic characters,
otherwise they are upright.

1 UNDERSCORE Characters are underscored.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 425

2 NEGATIVE Characters have their foreground and
background reversed.

3 OUTLINED Outline (hollow) characters, otherwise
they are solid.

4 STRIKEOUT Characters are overstruck.

5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard
weight/style for the font.

Comments: All undefined bits must be zero.

This field contains information on the original design of the font. Bits 0 & 5
can be used to determine if the font was designed with these features or
whether some type of machine simulation was performed on the font to
achieve this appearance. Bits 1-4 are rarely used bits that indicate the font
is primarily a decorative or special purpose font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is
undefined. As noted above, the settings of bits 0 and 1 must be reflected
in the macStyle bits in the 'head' table. While bit 6 on implies that bits 0
and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection)
may be clear and that does not give any indication of whether or not bit 6
of fsSelection is clear (e.g., Arial Light would have all bits cleared; it is not
the regular version of Arial).

usFirstCharIndex

Format: 2-byte USHORT

Description: The minimum Unicode index (character code) in this font, according to the
cmap subtable for platform ID 3 and platform- specific encoding ID 0 or 1.
For most fonts supporting Win-ANSI or other character sets, this value
would be 0x0020.

usLastCharIndex

Format: 2-byte USHORT

Description: The maximum Unicode index (character code) in this font, according to
the cmap subtable for platform ID 3 and encoding ID 0 or 1. This value
depends on which character sets the font supports.

sTypoAscender

Format: SHORT

ISO/IEC FDIS 14496-22:2006(E)

426 © ISO/IEC 2006 — All rights reserved

Description: The typographic ascender for this font. Remember that this is not the
same as the Ascender value in the 'hhea' table. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an AFM
file. For CJK fonts see below.

The suggested usage for sTypoAscender is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatibility requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoAscender is that which describes the top of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoAscender must be set to 880. Failing to adhere to these
requirements will result in incorrect vertical layout.

Also see the Recommendations clause 6 for more on this field.

sTypoDescender

Format: SHORT

Description: The typographic descender for this font. Remember that this is not the
same as the Descender value in the 'hhea' table. One good source for
sTypoDescender in Latin based fonts is the Descender value from an
AFM file. For CJK fonts see below.

The suggested usage for sTypoDescender is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
The goal is to free applications from Macintosh or Windows-specific
metrics which are constrained by backward compatability requirements.
These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and
portable fashion. These metrics will be exposed through Windows APIs.
Macintosh applications will need to access the 'sfnt' resource and parse it
to extract this data from the "OS/2" table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be
used for vertical writing (in addition to horizontal writing), the required
value for sTypoDescender is that which describes the bottom of the of the
ideographic em-box. For example, if the ideographic em-box of the font
extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box
set 120 design units below the Latin baseline), then the value of
sTypoDescender must be set to -120. Failing to adhere to these
requirements will result in incorrect vertical layout.

Also see the Recommendations clause 6 for more on this field.

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 427

sTypoLineGap

Format: 2-byte SHORT

Description: The typographic line gap for this font. Remember that this is not the same
as the LineGap value in the 'hhea' table,.

The suggested usage for usTypoLineGap is that it be used in conjunction
with unitsPerEm to compute a typographically correct default line spacing.
Typical values average 7-10% of units per em. The goal is to free
applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see chapter,
"Recommendations for Windows Fonts). These new metrics, when
combined with the character design widths, will allow applications to lay
out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications
will need to access the 'sfnt' resource and parse it to extract this data from
the "OS/2" table

usWinAscent

Format: 2-byte USHORT

Description: The ascender metric for Windows.. For platform 3 encoding 0 fonts, it is
the same as yMax. Windows will clip the bitmap of any portion of a glyph
that appears above this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

usWinDescent

Format: 2-byte USHORT

Description: The descender metric for Windows. For platform 3 encoding 0 fonts, it is
the same as -yMin. Windows will clip the bitmap of any portion of a glyph
that appears below this value. Some applications use this value to
determine default line spacing. This is strongly discouraged. The
typographic ascender, descender and line gap fields in conjunction with
unitsPerEm should be used for this purpose. Developers should set this
field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line spacing
using this field, for those applications that continue to use this field for
doing so (against OFF recommendations), then the value should be set
appropriately. In such a case, it may result in some glyph bitmaps being
clipped.

ISO/IEC FDIS 14496-22:2006(E)

428 © ISO/IEC 2006 — All rights reserved

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long(2 copies) totaling 64 bits.

Title: Code Page Character Range

Description: This field is used to specify the code pages encompassed by the font file
in the 'cmap' subtable for platform 3, encoding ID 1 (Microsoft platform). If
the font file is encoding ID 0, then the Symbol Character Set bit should be
set. If the bit is set (1) then the code page is considered functional. If the
bit is clear (0) then the code page is not considered functional. Each of the
bits is treated as an independent flag and the bits can be set in any
combination. The determination of "functional" is left up to the font
designer, although character set selection should attempt to be functional
by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is
set, and the font file contains a 'cmap' subtable for platform of 3 and
encoding ID of 1, then all of the characters in the Unicode range 0xF000 -
0xF0FF (inclusive) will be used to enumerate the symbol character set. If
the bit is not set, any characters present in that range will not be
enumerated as a symbol character set.

All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description

0 1252 Latin 1

1 1250 Latin 2: Eastern Europe

2 1251 Cyrillic

3 1253 Greek

4 1254 Turkish

5 1255 Hebrew

6 1256 Arabic

7 1257 Windows Baltic

8 1258 Vietnamese

9-15 Reserved for Alternate ANSI

16 874 Thai

17 932 JIS/Japan

18 936 Chinese: Simplified chars--PRC and Singapore

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 429

19 949 Korean Wansung

20 950 Chinese: Traditional chars--Taiwan and Hong Kong

21 1361 Korean Johab

22-28 Reserved for Alternate ANSI & OEM

29 Macintosh Character Set (US Roman)

30 OEM Character Set

31 Symbol Character Set

32-47 Reserved for OEM

48 869 IBM Greek

49 866 MS-DOS Russian

50 865 MS-DOS Nordic

51 864 Arabic

52 863 MS-DOS Canadian French

53 862 Hebrew

54 861 MS-DOS Icelandic

55 860 MS-DOS Portuguese

56 857 IBM Turkish

57 855 IBM Cyrillic; primarily Russian

58 852 Latin 2

59 775 MS-DOS Baltic

60 737 Greek; former 437 G

61 708 Arabic; ASMO 708

62 850 WE/Latin 1

63 437 US

sxHeight

ISO/IEC FDIS 14496-22:2006(E)

430 © ISO/IEC 2006 — All rights reserved

Format: SHORT

Description: This metric specifies the distance between the baseline and the
approximate height of non-ascending lowercase letters measured in
FUnits. This value would normally be specified by a type designer but in
situations where that is not possible, for example when a legacy font is
being converted, the value may be set equal to the top of the unscaled
and unhinted glyph bounding box of the glyph encoded at U+0078 (LATIN
SMALL LETTER X). If no glyph is encoded in this position the field should
be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value
of one font can be scaled to approximate the apparent size of another.

sCapHeight

Format: SHORT

Description: This metric specifies the distance between the baseline and the
approximate height of uppercase letters measured in FUnits. This value
would normally be specified by a type designer but in situations where
that is not possible, for example when a legacy font is being converted,
the value may be set equal to the top of the unscaled and unhinted glyph
bounding box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER
H). If no glyph is encoded in this position the field should be set to 0.

This metric, if specified, can be used in systems that specify type size by
capital height measured in millimeters. It can also be used as an
alignment metric; the top of a drop capital, for instance, can be aligned to
the sCapHeight metric of the first line of text.

usDefaultChar

Format: USHORT

Description: Whenever a request is made for a character that is not in the font,
Windows provides this default character. If the value of this field is zero,
glyph ID 0 is to be used for the default character otherwise this is the
Unicode encoding of the glyph that Windows uses as the default
character.

usBreakChar

Format: USHORT

Description: This is the Unicode encoding of the glyph that Windows uses as the break
character. The break character is used to separate words and justify text.
Most fonts specify 'space' as the break character.

usMaxContext

ISO/IEC FDIS 14496-22:2006(E)

© ISO/IEC 2006 — All rights reserved 431

Format: USHORT

Description: The maximum length of a target glyph context for any feature in this font.
For example, a font which has only a pair kerning feature should set this
field to 2. If the font also has a ligature feature in which the glyph
sequence 'f f i' is substituted by the ligature 'ffi', then this field should be
set to 3. This field could be useful to sophisticated line-breaking engines
in determining how far they should look ahead to test whether something
could change that effects the line breaking. For chaining contextual
lookups, the length of the string (covered glyph) + (input sequence) +
(lookahead sequence) should be considered.

ISO/IEC FDIS 14496-22:2006(E)

432 © ISO/IEC 2006 — All rights reserved

Bibliography

[1] List of Locale ID (LCID) Values as Assigned by Microsoft -
http://www.microsoft.com/globaldev/reference/lcid-all.mspx

[2] The WGL4 character set - http://www.microsoft.com/typography/otspec/WGL4.htm

[3] Adobe Glyph List - http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

[4] Type 2 Charstring format, <http://partners.adobe.com/public/developer/en/font/5177.Type2.pdf>

[5] The Compact Font Format specification,
<http://partners.adobe.com/public/developer/en/font/5176.CFF.pdf>

[6] Vendor registry - http://www.microsoft.com/typography/links/vendorlist.aspx

[7] Apple's TrueType Reference Manual - http://developer.apple.com/fonts/TTRefMan/

[8] TrueType Font Files, Technical Specification V1.66
http://www.microsoft.com/typography/SpecificationsOverview.mspx

[9] OpenType Layout Font Specification http://www.microsoft.com/typography/otspec/TTOCHAP1.htm

[10] Script-specific Development: http://www.microsoft.com/typography/SpecificationsOverview.mspx

[11] Feature Tags: http://www.microsoft.com/typography/developers/OpenType/featuretags.aspx

[12] PKCS#7 signatures: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-7.asc

[13] Counter-signatures: ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-9.asc

[14] PANOSE Specification: http://www.panose.com/

i TrueType is a trademark of Apple Computer Incorporated.
ii OPENTYPE is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries.
iii PostScript is a registered trademark of Adobe Systems Incorporated.
iv MicroType is a registered trademark of Monotype Imaging Inc.

