
XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 21 

9. Parts and Relationships 1 

The packaging conventions described in the OPC specification can be used to carry any payload. 2 

A payload is a complete collection of interdependent parts and relationships within a package. 3 

This specification defines a particular payload that contains a static or ―fixed-layout‖ 4 

representation of paginated content: the fixed payload.  5 

A package that holds at least one fixed payload and follows the rules described in this 6 

specification is referred to as an XPS Document. Producers and consumers of XPS Documents 7 

can implement their own parsers and rendering engines based on this specification. 8 

XPS Documents address the requirements that information workers have for distributing, 9 

archiving, rendering, and processing documents. Using known rendering rules, XPS Documents 10 

can be unambiguously reproduced or printed without tying client devices or applications to 11 

specific operating systems or service libraries. Because the XPS Document is expressed in a 12 

neutral, application-independent way, the content can be viewed and printed without the 13 

application used to create the package.  14 

9.1 Fixed Payload 15 

A payload that has a FixedDocumentSequence root part is known as a fixed payload. A fixed 16 

payload root is a FixedDocumentSequence part that references FixedDocument parts that, in 17 

turn, reference FixedPage parts. 18 

A specific relationship type is defined to identify the root of a fixed payload within an XPS 19 

Document: the XPS Document StartPart relationship. The primary fixed payload root is the 20 

FixedDocumentSequence part that is referenced by the XPS Document StartPart relationship. 21 

Consumers such as viewers or printers use the XPS Document StartPart relationship to find the 22 

primary fixed payload in a package. The XPS Document StartPart relationship MUST point to the 23 

FixedDocumentSequence part that identifies the root of the fixed payload [M2.14].  24 

The payload includes the full set of parts required for processing the FixedDocumentSequence 25 

part. All content to be rendered MUST be contained in the XPS Document [M2.1]. The parts that 26 

can be found in an XPS Document are listed in Table 9–1. Relationships and content types for 27 

these parts are defined in §H. Each part MUST use only the appropriate content type specified 28 

in §H [M2.2]. 29 

Table 9–1. XPS Document parts 30 

Name Description Required/Optional 

FixedDocumentSequence 

(§9.1.2) 

Specifies a sequence of fixed 

documents. 

REQUIRED [M2.3] 

FixedDocument (§9.1.3) Specifies a sequence of fixed pages. REQUIRED [M2.4] 

FixedPage (§9.1.4) Contains the description of the contents 

of a page.  

REQUIRED [M2.5] 

Font (§9.1.7) Contains an OpenType or TrueType 

font. 

REQUIRED if a 

<Glyphs> element 

is present [M2.6] 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 33 

9.1.7 Font Parts 1 

Fonts are stored in font parts. XPS Documents MUST support the OpenType font format, which 2 

includes TrueType and CFF fonts [M2.39]. To support portability, Unicode-encoded fonts 3 

SHOULD be used (see §9.1.7.5 for additional information) [S2.15]. 4 

Font parts are referenced using the FontUri attribute of the <Glyphs> element. A single font can 5 

be shared among multiple fixed pages in one or more fixed documents. Font references MUST 6 

be internal to the package; external references to fonts are invalid [M2.1]. 7 

If the referenced font part is a TrueType Collection, the fragment portion of the URI indicates 8 

the font face to be used. The use of URI fragments is specified in the BNF of Generic URI 9 

Syntax specification. The fragment contained in the FontURI attribute value MUST be an integer 10 

between 0 and n−1, inclusive, where n is the number of font faces contained in the TrueType 11 

Collection [M2.38]. The syntax for the integer value is expressed as: 12 

 13 

fontface = *DIGIT 14 

[Example: To reference the first font face in the font part ―../Resources/Fonts/CJKSuper.ttc‖, 15 

the value of the FontUri attribute is  ―../Resources/Fonts/CJKSuper.ttc#0‖. end example] If no 16 

fragment is specified, the first font face is used in the same way as if the URI had specified 17 

―#0‖. If the fragment is not recognised as a valid integer, consumers SHOULD generate an 18 

error [S2.35]. 19 

Content types for fonts differ depending on whether the font is non-obfuscated or obfuscated 20 

(see §9.1.7.2). Content types are summarized in §H. 21 

Fixed pages MUST use a Required Resource relationship to each Font parts referenced [M2.10]. 22 

For more information, see §H. 23 

9.1.7.1 Subsetting Fonts 24 

XPS Documents represent text using the <Glyphs> element. Since the format is fixed, it is 25 

possible to create a font subset that contains only the glyphs required by the package. Fonts 26 

MAY be subsetted based on glyph usage [O2.20]. Although a subsetted font does not contain all 27 

the glyphs in the original font, it MUST be a valid OpenType font file [M2.39]. Requirements for 28 

valid OpenType font files are described in the OpenType Font File specification.  29 

9.1.7.2 OpenType Font Embedding 30 

Protecting the intellectual property of font vendors is a goal of the XPS Document format. 31 

Therefore, producers MUST observe the guidelines and mechanisms described below in order to 32 

honor the licensing rights specified in OpenType fonts [M2.40]. It is not the responsibility of 33 

consumers to enforce font licensing intent, although consumers MUST be able to process XPS 34 

Documents using any combination of these embedding and obfuscation mechanisms, even if 35 

produced in violation of these guidelines [M2.41]. 36 

The licensing rights of an OpenType font are specified in the fsType field of the required OS/2 37 

table in the font file. Table 9–7 lists the bit mask values that can appear in arbitrary 38 

combinations in the fsType field. Also listed are short descriptions of the licensing right intents 39 

and requirements or recommendations. These requirements represent the ―rules‖ that 40 

producers and consumers must follow in order to respect licensing rights specified in the font. 41 

For further details on licensing rights of OpenType fonts, see the description of the OS/2 table 42 

in ―OS/2 and Windows Metrics.‖ 43 



9. Parts and Relationships XPS Specification and Reference Guide 

34 Working Draft 1.2, May 2008 

Table 9–7. Guidelines for OpenType font embedding 1 

Bit/mask Licensing right intent Producer rules Consumer rules 

− / 

0x0000 

Installable embedding. SHOULD do embedded 

font obfuscation [S2.16] 

(see §9.1.7.3 for 

details). 

SHOULD NOT extract or 

install permanently (see 

below) [S2.17]. 

0 / 

0x0001 

Reserved, must be 0.   

1 / 

0x0002 

Restricted license 

embedding. If only this 

bit is set, the font 

MUST NOT be 

modified, embedded or 

exchanged in any 

manner without 

obtaining permission 

from the legal owner. 

MUST NOT embed 

[M2.42].  

SHOULD generate a 

path filled with an image 

brush referencing an 

image of rendered 

characters [S2.18]. 

SHOULD include the text 

in the 
AutomationProperties.Name 

attribute of the <Path> 

element [S2.18]. 

Render embedded 

images. 

 

2 / 

0x0004 

For preview and print 

embedding, font can 

be embedded and 

temporarily used on 

remote systems. 

However, documents 

containing any preview 

and print fonts MUST 

NOT be modified or 

edited [M2.43]. 

MUST do embedded font 

obfuscation [M2.44] 

(see §9.1.7.3). 

MUST add a Restricted 

Font relationship to the 

FixedDocument part of 

the document containing 

the font [M2.12]. 

See §12.1.7 and §H.3 

for details.  

MUST NOT extract or 

install permanently 

[M2.45]. 

MUST NOT modify or 

edit the XPS Document 

markup or hierarchical 

structure starting from 

the <FixedDocument> 

element [M2.43]. 

3 / 

0x0008 

Editable embedding. MUST do embedded font 

obfuscation [M2.46] 

(see §9.1.7.3). 

MUST NOT extract or 

install permanently 

[M2.47]. 

4–7 Reserved, must be 0.   

8 / 

0x0100 

No subsetting. MUST do embedded font 

obfuscation 

(see §9.1.7.3) [M2.48]. 

MUST NOT subset font 

before embedding. 

[M2.49] 

MUST NOT extract or 

install permanently 

[M2.50]. 

9 / 

0x0200 

Bitmap embedding 

only. 

MUST do embedded font 

obfuscation [M2.51] 

(see §9.1.7.3). 

MUST embed only 

bitmap characters 

contained in the font 

[M2.51]. 

If no bitmap characters 

MUST NOT extract or 

install permanently 

[M2.52]. 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 35 

are present in the font, 

MUST NOT embed the 

font [M2.51]. 

10–15 Reserved, must be 0.   

9.1.7.3 Embedded Font Obfuscation 1 

Embedded font obfuscation is a means of preventing casual misappropriation of embedded 2 

fonts. Specifically, embedded font obfuscation prevents end-users from using standard ZIP 3 

utilities to extract fonts from XPS Document files and install them on their systems.  4 

Embedded font obfuscation is not considered a strong encryption of the font data. 5 

Embedded font obfuscation achieves the following goals: 6 

1. Obfuscated font files are embedded within an XPS Document package in a form that 7 

cannot be directly installed on any client operating system. 8 

2. Obfuscated font files are closely tied to the content referencing them. Therefore, it is 9 

non-trivial to misappropriate fonts by moving them from one package to another. 10 

3. The manner in which obfuscated font files are tied to the content referencing them still 11 

allows for document merging.0. 12 

For information on how to determine when fonts must be obfuscated prior to embedding, see 13 

Table 9–7. above. 14 

Although the licensing intent allows embedding of non-obfuscated fonts and installation of the 15 

font on a remote client system under certain conditions, this is NOT RECOMMENDED in XPS 16 

Documents [S2.19]. However, there are vertical solutions in which implementations might 17 

benefit from un-obfuscated font embedding. In these cases, implementations could omit 18 

obfuscation or extract and install the embedded font. 19 

If a producer is required to perform embedded font obfuscation, it MUST satisfy the following 20 

requirements [M2.53]: 21 

1. Generate a 128-bit GUID (Globally Unique Identifier) for the font to be obfuscated. 22 

Instead of a true GUID, a 128-bit random number MAY be used [O2.21]. The 16 bytes of 23 

the 128-bit GUID are referred to in the following text by the placeholder names B00, B01, 24 

B02, B03; B10, B11; B20, B21; B30, B31, B32, B33, B34, B35, B36, and B37. The order in which 25 

bytes are assigned to these placeholders does not matter, as long as it is consistent for 26 

obfuscation and de-obfuscation. 27 

2. Generate a part name for the obfuscated font using the GUID. The last segment of the 28 

part name MUST be of the form ―B03B02B01B00-B11B10-B21B20-B30B31-B32B33B34B35B36B37‖ or 29 

―B03B02B01B00-B11B10-B21B20-B30B31-B32B33B34B35B36B37.ext‖ where each Bx represents a 30 

placeholder for one byte of the GUID, represented as two hex digits [M2.54]. The part 31 

name MAY have an arbitrary extension (identified by the placeholder ―.ext‖) [O2.22]. It is 32 

RECOMMENDED that the extension for TrueType fonts be ―.odttf‖ and for TrueType 33 

collections be ―.odttc‖ [S2.20]. 34 

3. The content type for the part containing the obfuscated font MUST match the definition 35 

in §H [M2.2]. 36 

4. Perform an XOR operation on the first 32 bytes of the binary data of the font part with 37 

the array consisting of the bytes referred to by the placeholders B37, B36, B35, B34, B33, 38 



9. Parts and Relationships XPS Specification and Reference Guide 

36 Working Draft 1.2, May 2008 

B32, B31, B30, B20, B21, B10, B11, B00, B01, B02, and B03, in that order and repeating the array 1 

once. The result is an obfuscated font. 2 

5. Store the obfuscated font in a part with the generated name.0. 3 

When processing fonts, consumers MUST follow these steps [M2.53]: 4 

1. If the content type of the part containing the font is not the obfuscated font content type 5 

as specified in H, process the font without any de-obfuscation steps. 6 

2. For font parts with the obfuscated font content type as specified in H, de-obfuscate the 7 

font by following these rules:0.2. 8 

a. Remove the extension from the last segment of the name of the part containing the 9 

font. 10 

b. Convert the remaining characters of the last segment to a GUID using the byte 11 

ordering described above. 12 

c. Perform an XOR operation on the first 32 bytes of the binary data of the obfuscated 13 

font part with the array consisting of the bytes referred to by the placeholders B37, 14 

B36, B35, B34, B33, B32, B31, B30, B20, B21, B10, B11, B00, B01, B02, and B03, in that order 15 

and repeating the array once. The result is a non-obfuscated font. 16 

d. Use the non-obfuscated font for the duration of the document processing, but do not 17 

leave any local or otherwise user-accessible copy of the non-obfuscated font. . 18 

9.1.7.4 Print and Preview Restricted Fonts 19 

If a producer embeds a font with the print and preview restriction bit set, it MUST also add a 20 

Restricted Font relationship from the FixedDocument part that includes the FixedPage 21 

referencing the font to the restricted font [M2.12]. 22 

Consumers that are also producers MUST NOT edit a document where the FixedDocument part 23 

has a Restricted Font relationship [M2.43]. When invoking editing functionality, consumers that 24 

are also producers MUST treat as an error any font with the print and preview restriction bit set 25 

for which no Restricted Font relationship has been added to the FixedDocument part [M2.12].  26 

Consumers that are not also producers MUST consider an XPS Document valid even if the 27 

producer failed to properly set the Restricted Font relationship [M2.12]. 28 

9.1.7.5 Non-Standard Font Compatibility Encoding 29 

When processing <Glyphs> elements, the consumer MUST first select a cmap table from the 30 

OpenType font following the order of preference shown below (highest listed first) [M2.55]: 31 

Table 9–8. Cmap table selection 32 

Platform ID Encoding ID Description 

3 10 Unicode with surrogates 

3 1 Unicode without surrogates 

3 5 Wansung 

3 4 Big5 

3 3 Prc 

3 2 ShiftJis 

3 0 Symbol 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 37 

0 Any Unicode (deprecated) 

1 0 MacRoman 

All further processing for that font MUST use the selected cmap table [M2.55]. 1 

If a Wansung, Big5, Prc, ShiftJis or MacRoman cmap has been selected, the consumer MUST 2 

correctly map from Unicode codepoints in the UnicodeString to the corresponding codepoints 3 

used by the cmap before looking up the glyphs [M2.56]. The Unicode standard provides details 4 

of the required mappings. 5 

Producers SHOULD avoid using fonts lacking a Unicode-encoded cmap table [S2.15]. 6 

When processing <Glyphs> elements that reference a cmap (3,0) encoding font, consumers 7 

MUST be prepared for the case in which the UnicodeString attribute contains character codes 8 

instead of PUA codepoints [M2.57]. This condition is indicated by an unsuccessful Unicode 9 

lookup of the codepoint specified in the Unicode string in the cmap (3,0) table. In this case, the 10 

correct glyph index is computed by following the general recommendations of the OpenType 11 

specification.  12 

When processing <Glyphs> elements that use this compatibility encoding, character codes in 13 

the range 0x20-0xff are mapped to PUA codepoints. Therefore, character codes in the range 14 

0x80-0x9f are not considered non-printable Unicode control codes. 15 

This non-standard encoding has been included to facilitate document production for certain 16 

producers. However, there are significant drawbacks resulting from this encoding: 17 

 Search is unpredictable 18 

 Copy and paste functionality is unpredictable 19 

Producers SHOULD NOT use this non-standard encoding and they SHOULD write PUA 20 

codepoints to the UnicodeString attribute [S2.15]. 21 

9.1.8 Remote Resource Dictionary Parts 22 

A remote resource dictionary allows producers to define resources that can be reused across 23 

many pages, such as a brush. This is stored in a Remote Resource Dictionary part. For more 24 

information, see §14.2.3.1. 25 

9.1.9 PrintTicket Parts 26 

PrintTicket parts provide user intent and device configuration information to printing 27 

consumers. PrintTicket parts MUST be processed when the XPS Document is printed [M2.58]. 28 

PrintTicket parts can be attached only to FixedDocumentSequence, FixedDocument and 29 

FixedPage parts and each of these parts MUST attach no more than one PrintTicket [M2.59]. 30 

PrintTickets can provide override settings to be used when printing the part to which they are 31 

attached. 32 

9.1.9.1 PrintTicket Format 33 

The PrintTicket is XML that provides print settings in a consistent, accessible, and extensible 34 

manner.  Valid PrintTicket settings are specified in the Print Schema. Within the context of an 35 

XPS Document, the PrintTicket is generated by the producer. Producers should note that an XPS 36 

Document might be printed on various devices, and that the settings included in the PrintTicket 37 

SHOULD support portability [S2.21]. Producers and consumers should note that not all 38 

PrintTicket keywords defined in the Print Schema are applicable to XPS Documents.  39 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 41 

9.2 Part Naming Recommendations 1 

Producers and consumers of XPS Documents refer to parts by name and use relationship names 2 

to identify the purpose of related parts. The OPC specification describes the syntax for part 3 

names. However, following these rules alone can result in a package that is difficult for users to 4 

understand. [Example: A user would have to open every Relationship part to know which parts 5 

are necessary to accurately render an XPS Document. end example] 6 

By choosing part names according to a well-defined, human-readable convention, the resulting 7 

package is easier to browse and specific parts are more easily located. Part names MUST still 8 

conform to the syntax specified in the OPC specification [M1.1]. 9 

It is RECOMMENDED that producers of XPS Documents use the following part naming 10 

convention: 11 

 The FixedDocumentSequence part name SHOULD contain only one segment, and that 12 

segment SHOULD have the extension ―.fdseq‖. [Example: ―/FixedDocSeq.fdseq‖ end 13 

example] [S2.24]. 14 

 A FixedDocument part name SHOULD contain three segments, using ―/Documents/n/‖ in 15 

the first two segments and the extension ―.fdoc‖ [S2.25]. Here, n SHOULD be a numeral 16 

that represents the ordinal position of the fixed document in the fixed document 17 

sequence [S2.25]. [Example: The fixed document referenced by the Source attribute of 18 

the third <DocumentReference> child of the <FixedDocumentSequence> element could 19 

be ―/Documents/3/FixedDocument.fdoc‖. end example] 20 

 A FixedPage part name SHOULD contain four segments, using ―/Documents/n/Pages/‖ as 21 

the first three segments and the extension ―.fpage‖ on the last segment [S2.26]. Here, n 22 

represents the fixed document that includes this page. [Example: The third page of the 23 

second document might be ―/Documents/2/Pages/3.fpage‖. end example] 24 

 Resource parts MAY be named to indicate whether their intended use is at the document 25 

level or as a shared resource for all documents [O2.28]. A resource that is specific to a 26 

particular document SHOULD have a part name that begins with the three segments 27 

―/Documents/n/Resources/‖ where n is the particular fixed document [S2.27]. A 28 

resource intended to be shared across documents SHOULD begin with the segment 29 

―/Resources/‖ and SHOULD have a final segment that is a globally unique identifier 30 

followed by the appropriate extension for that resource [S2.27]. [Example: 31 

―/Resources/Fonts/63B51F81-C868-11D0-999C-00C04FD655E1.odttf‖ end example] 32 

A Font part name SHOULD append the segment ―Fonts/‖ to the resource part name prefix 33 

specified above [S2.27]. [Example: A font might be named 34 

―/Documents/1/Resources/Fonts/Arial.ttf‖ or ―/Resources/Fonts/F2ABC7B7-C60D-4FB9-35 

AAE4-3CA0F6C7038A.odttf‖. end example] 36 

An Image part name SHOULD append the segment ―Images/‖ to the resource part name 37 

specified above [S2.27]. [Example: An image might be named 38 

―/Documents/3/Resources/Images/dog.jpg‖ or ―/Resources/Images/E0D79307-846E-39 

11CE-9641-444553540000.jpg‖. end example] 40 

A Remote Resource Dictionary part name SHOULD append the segment ―Dictionaries/‖ to 41 

the resource part name specified above [S2.27]. Remote resource dictionaries SHOULD 42 

also use the ―.dict‖ extension [S2.27]. [Example: A resource dictionary might be named 43 

―/Documents/2/Resources/Dictionaries/Shapes.dict‖ or 44 



9. Parts and Relationships XPS Specification and Reference Guide 

42 Working Draft 1.2, May 2008 

―/Resources/Dictionaries/0DDF3BE2-E692-15D1-AB06-B0AA00BDD685.dict‖. end 1 

example] 2 

 Any DocumentStructure part name SHOULD contain four segments using 3 

―/Documents/n/Structure/‖ as the first three segments and the extension ―.struct‖ 4 

[S2.28]. Here n represents the fixed document that this structure is associated with. 5 

[Example: The DocumentStructure part for the first document in a fixed document 6 

sequence could be ―/Documents/1/Structure/DocStructure.struct‖. end example] 7 

 Any StoryFragments part name SHOULD contain five segments using 8 

―/Documents/n/Structure/Fragments‖ as the first four segments and the extension 9 

―.frag‖ [S2.29]. Here n represents the fixed document that these parts are associated 10 

with. [Example: A StoryFragment part associated with the third page of the second 11 

document in a fixed document sequence could be 12 

―/Documents/2/Structure/Fragments/3.frag‖. end example] 13 

 ICC profile part names SHOULD contain four segments, using ―/Documents/n/Metadata/‖ 14 

as the first three segments, where n is the fixed document that uses these parts 15 

[S2.30]. If an ICC profile part is shared across documents, the part name SHOULD 16 

contain two segments, using ―/Metadata/‖ as the first segment and a second segment 17 

that is a string representation of a globally unique identifier, followed by an extension 18 

[S2.30]. ICC profiles SHOULD use an appropriate extension for the color profile type. 19 

[S2.30] [Example:  ―.icm‖ end example] 20 

 Thumbnail part names SHOULD contain four segments, using ―/Documents/n/Metadata/‖ 21 

as the first three segments, where n is the fixed document that uses the thumbnail 22 

[S2.31]. If the Thumbnail part relates to the package as a whole, the part name 23 

SHOULD contain two segments, using ―/Metadata/‖ as the first segment and a second 24 

segment that is a string representation of a globally unique identifier, followed by an 25 

extension [S2.31]. Thumbnails SHOULD use an extension appropriate to the image type, 26 

either ―.png‖ or ―.jpg‖ [S2.31]. [Example: A Thumbnail part for a particular fixed page 27 

might be ―/Documents/1/Metadata/5.png‖. end example] 28 

 PrintTicket part names associated with the entire job SHOULD be associated via 29 

relationship with the FixedDocumentSequence part and contain two segments, using 30 

―/Metadata/‖ as the first segment [S2.32]. PrintTicket parts associated with a particular 31 

fixed document or fixed page SHOULD contain four segments, using 32 

―/Documents/n/Metadata/‖ as the first three segments, where n is the fixed document 33 

that uses these parts [S2.32]. PrintTicket parts SHOULD use the extension ―.xml‖ 34 

[S2.32]. [Example: A PrintTicket associated with the entire job could be 35 

―/Metadata/Job_PT.xml‖ and a PrintTicket associated with a single page might be 36 

―/Documents/1/Metadata/Page2_PT.xml‖. end example] 37 

 The names of any non-standard parts that are associated with a particular fixed 38 

document SHOULD contain four segments, using ―/Documents/n/Other/‖ as the first 39 

three segments. Here, n is the fixed document to which the part belongs [S2.33]. 40 

Example 9–2. XPS Document part naming  41 

An XPS Document that contains two FixedDocument parts is represented as follows: 42 

/FixedDocSeq.fdseq 43 

/Documents/1/FixedDocument.fdoc 44 

/Documents/1/Pages/1.fpage 45 

/Documents/1/Pages/2.fpage 46 

/Documents/1/Resources/Fonts/FontA.ttf 47 

/Documents/1/Resources/Images/ImageB.jpg 48 

/Documents/1/Metadata/Document_PT.xml 49 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 43 

/Documents/1/Metadata/Page5_PT.xml 1 

/Documents/1/Structure/DocStructure.struct 2 

/Documents/1/Structure/Fragments/1.frag 3 

/Documents/1/Structure/Fragments/2.frag 4 

/Documents/1/Other/FabrikamIncBussinessAccount.xml 5 

/Documents/2/FixedDocument.fdoc 6 

/Documents/2/Pages/1.fpage 7 

/Documents/2/Resources/Fonts/FontB.ttf 8 

/Documents/2/Resources/Images/ImageA.png 9 

/Documents/2/Metadata/ColorProfile.icm 10 

/Documents/2/Metadata/Document_PT.xml 11 

/Documents/2/Other/FabrikamIncInsuranceInfo.xml 12 

/Metadata/Job_PT.xml 13 

/Resources/Fonts/63B51F81-C868-11D0-999C-00C04FD655E1.ttf 14 

end example] 15 

9.3 XPS Document Markup 16 

XPS Document markup has been designed to facilitate the independent development of 17 

compatible systems that produce or consume XPS Documents. It also shares concepts with 18 

portions of the Microsoft .NET Framework 3.0 programming platform.  19 

The graphics rendering model is shared with that of the Windows Presentation Foundation, 20 

assuring fidelity between on-screen display and printed output. The syntax of fixed page, fixed 21 

document, and fixed document sequence markup is compatible with that of Windows 22 

Presentation Foundation XAML. The elements, attributes, and attribute values are a subset of 23 

those defined by the Windows Presentation Foundation.  24 

The relationship between XPS Document markup and .NET 3.0 technologies does not impose 25 

any requirement on system implementations. Support for XPS Document markup does not 26 

require incorporation of .NET 3.0, the Windows Presentation Foundation, or managed code. 27 

However, the relationship with .NET 3.0 technologies allows producers to extend XPS Document 28 

markup for further use in the Windows Presentation Foundation framework, such as by 29 

including additional presentation features. 30 

The design of XPS Document markup reflects the tradeoffs between two, sometimes competing, 31 

goals: 32 

1. XPS Document markup should be parsimonious; that is, it should include only the 33 

minimum set of primitive operations and markup constructs necessary to render text and 34 

graphics with full fidelity. Redundancy in the specification increases the opportunity for 35 

independent implementations, such as printer-resident raster image processors (RIPs), 36 

viewers, and interactive applications, to introduce accidental incompatibilities. 37 

Redundancy also increases the cost of implementation and testing, and, typically, the 38 

required memory footprint. 39 

2. XPS Document markup should be compact; that is, the most common graphical 40 

primitives for vector graphics and text-rendering should have compact representations. 41 

Bloated representations compromise the performance of systems handling XPS 42 

Documents. As byte-count increases, so does communication time. Although 43 

compression can be used to improve communication time, it cannot eliminate the 44 

performance loss caused by bloated representations. 0. 45 



XPS Specification and Reference Guide 9. Parts and Relationships 

 Working Draft 1.2, May 2008 47 

Example 9–4. Property element syntax 1 

When specifying Clip and RenderTransform properties of the canvas, both must appear before 2 

any path and glyphs contents of the canvas. 3 

<Canvas> 4 

   <!-- First, the property-related child elements --> 5 

   <Canvas.RenderTransform> 6 

      <MatrixTransform Matrix="1,0,0,1,0,0" /> 7 

   </Canvas.RenderTransform> 8 

   <Canvas.Clip> 9 

      <PathGeometry> 10 

         ... 11 

      </PathGeometry> 12 

   </Canvas.Clip> 13 

   <!-- Then, the "contents" --> 14 

   <Path ...> 15 

      ... 16 

   </Path> 17 

   <Glyphs ... /> 18 

</Canvas> 19 

end example] 20 

9.3.4 Whitespace 21 

XPS Documents allow flexible whitespace usage in markup. Wherever a single whitespace 22 

character is allowed, multiple whitespace characters MAY be used [O2.30]. Attributes that 23 

specify comma-delimited attribute values MAY, unless specified otherwise, OPTIONALLY include 24 

whitespace characters preceding or following the comma [O2.31]. XPS Document markup MUST 25 

NOT use the xml:space attribute [M2.75]. Additionally, where the XPS Document schema 26 

specifies attributes of types that allow whitespace collapsing, leading and trailing whitespace in 27 

the attribute value MAY be used along with other whitespace that relies on the whitespace 28 

collapsing behavior specified in the XML Schema Specification [O2.32]. 29 

[Note: Consult the XPS Document Schema for exact whitespace allowed. end note] 30 

9.3.5 Language  31 

Language information supports the following features: 32 

 Language-dependent find features 33 

 Selection of a text-to-speech dictionary by a screen-reading program (to provide 34 

accessibility to persons with disabilities) 35 

 Selection of a spelling checker for text copied to another document 36 

 Selection of a grammar checker for text copied to another document 37 

 Correct font rendering when copying the text to another document 38 

The last point refers to instances in which multiple languages share the same script. [Example: 39 

The Devanagari script is shared by the Indic languages Bhojpuri, Bihari, Hindi, Kashmiri, 40 

Konkani, Marathi, Nepali, and Sanskrit. However, these languages render certain glyph 41 

sequences differently. When text is copied from an XPS Document, the language of the copied 42 

characters is needed to ensure proper rendering of the glyphs when they are pasted into 43 



9. Parts and Relationships XPS Specification and Reference Guide 

48 Working Draft 1.2, May 2008 

another application. This scenario applies to most Indic-language fonts, some East Asian–1 

language fonts, and others. end example] 2 

9.3.5.1 xml:lang Attribute 3 

The language of the contents of an XPS Document MUST be identified using the xml:lang 4 

attribute, the value of which is inherited by child and descendant elements [M2.76]. This 5 

attribute is defined in the W3C XML specification. 6 

xml:lang is REQUIRED for <FixedPage> elements and MAY be used with <Canvas>, <Path>, and 7 

<Glyphs> elements; it is not valid on any other fixed page markup element [M2.72]. xml:lang is 8 

also REQUIRED for the <DocumentOutline> element for document structure and OPTIONAL for 9 

the <OutlineEntry> element [M2.72]. When the language of the contents is unknown and is 10 

required, the value ―und‖ (undetermined) MUST be used [M2.76]. 11 



XPS Specification and Reference Guide 10. Documents 

 Working Draft 1.2, May 2008 65 

10.6 <Glyphs> Element 1 

The <Glyphs> element is used to represent a run of uniformly-formatted text from a single 2 

font. The <Glyphs> element provides information for accurate rendering and supports search 3 

and selection features in XPS Document consumers. For more information, see §12.1.  4 

 5 



12. Text XPS Specification and Reference Guide 

98 Working Draft 1.2, May 2008 

12.1 <Glyphs> Element 1 

element Glyphs 2 

diagram 

 

attributes Name   Type   Use   Default   Fixed   Annotation 

BidiLevel       0      Specifies the Unicode algorithm 

bidirectional nesting level. Even 

values imply left-to-right layout, 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 99 

odd values imply right-to-left 

layout. Right-to-left layout places 

the run origin at the right side of 

the first glyph, with positive 

advance widths (representing 

advances to the left) placing 

subsequent glyphs to the left of the 

previous glyph. Valid values range 

from 0 to 61, inclusive. 
 

CaretStops   ST_CaretStops           Identifies the positions within the 

sequence of Unicode characters at 

which a text-selection tool can 

place a text-editing caret. Potential 

caret-stop positions are identified 

by their indices into the UTF-16 

code units represented by the 

UnicodeString attribute value.  

When this attribute is missing, the 

text in the UnicodeString attribute 

value MUST be interpreted as 

having a caret stop between every 

Unicode UTF-16 code unit and at 

the beginning and end of the text 

[M5.1]. 

The value SHOULD indicate that 

the caret cannot stop in front of 

most combining marks or in front 

of the second UTF-16 code unit of 

UTF-16 surrogate pairs [S5.1]. 
 

DeviceFontName   ST_UnicodeString           Uniquely identifies a specific device 

font. The identifier is typically 

defined by a hardware vendor or 

font vendor. 
 

Fill   ST_RscRefColor           Describes the brush used to fill the 

shape of the rendered glyphs. 
 

FontRenderingEmSize   ST_GEZero  required         Specifies the font size in drawing 

surface units, expressed as a float 

in units of the effective coordinate 

space. A value of 0 results in no 

visible text. 
 

FontUri   xs:anyURI required         The URI of the physical font from 

which all glyphs in the run are 

drawn. The URI MUST reference a 

font contained in the package 

[M2.1]. If the physical font 

referenced is a TrueType Collection 

(containing multiple font faces), 



12. Text XPS Specification and Reference Guide 

100 Working Draft 1.2, May 2008 

the fragment portion of the URI is 

a 0-based index indicating which 

font face of the TrueType Collection 

should be used. 
 

OriginX   ST_Double  required         Specifies the x coordinate of the 

first glyph in the run, in units of the 

effective coordinate space. The 

glyph is placed so that the leading 

edge of its advance vector and its 

baseline intersect with the point 

defined by the OriginX and OriginY 

attributes. 
 

OriginY   ST_Double  required         Specifies the y coordinate of the 

first glyph in the run, in units of the 

effective coordinate space. The 

glyph is placed so that the leading 

edge of its advance vector and its 

baseline intersect with the point 

defined by the OriginX and OriginY 

attributes. 
 

IsSideways   ST_Boolean     false      Indicates that a glyph is turned on 

its side, with the origin being 

defined as the top center of the 

unturned glyph. 
 

Indices   ST_Indices           Specifies a series of glyph indices 

and their attributes used for 

rendering the glyph run. If the 

UnicodeString attribute specifies an 

empty string (―‖ or ―{}‖) and the 

Indices attribute is not specified or 

is also empty, a consumer MUST 

generate an error [M5.2]. 
 

UnicodeString   ST_UnicodeString           Contains the string of text 

rendered by the <Glyphs> 

element. The text is specified as 

Unicode code points. 
 

StyleSimulations   ST_StyleSimulations     None      Specifies a style simulation. Valid 

values are None, ItalicSimulation, 

BoldSimulation, and 

BoldItalicSimulation. 
 

RenderTransform   ST_RscRefMatrix           Establishes a new coordinate frame 

for the glyph run specified by the 

<Glyphs> element. The render 

transform affects clip, opacity 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 101 

mask, fill, x origin, y origin, the 

actual shape of individual glyphs, 

and the advance widths. The 

render transform also affects the 

font size and values specified in the 

Indices attribute. 
 

Clip   ST_RscRefAbbrGeomF           Limits the rendered region of the 

element. Only portions of the 

<Glyphs> element that fall within 

the clip region (even partially 

clipped characters) produce marks 

on the page. 
 

Opacity   ST_ZeroOne     1.0      Defines the uniform transparency 

of the glyph element. Values range 

from 0 (fully transparent) to 1 

(fully opaque), inclusive. Values 

outside of this range are invalid. 
 

OpacityMask   ST_RscRef           Specifies a mask of alpha values 

that is applied to the glyphs in the 

same fashion as the Opacity 

attribute, but allowing different 

alpha values for different areas of 

the element. 
 

Name   ST_Name           Contains a string value that 

identifies the current element as a 

named, addressable point in the 

document for the purpose of 

hyperlinking. 
 

FixedPage.NavigateUri   xs:anyURI          Associates a hyperlink URI with the 

element. May be a relative 

reference or a URI that addresses a 

resource that is internal to or 

external to the package. 
 

xml:lang             Specifies the default language used 

for the current element. The 

language is specified according to 

RFC 3066. 
 

x:Key             Specifies a name for a resource in 

a resource dictionary. x:Key MUST 

be present when the current 

element is defined in a resource 

dictionary. x:Key MUST NOT be 

specified outside of a resource 

dictionary [M5.3]. 
 

 



12. Text XPS Specification and Reference Guide 

102 Working Draft 1.2, May 2008 

annotation Represents a run of text from a single font. 
 

The <Glyphs> element represents a run of uniformly-formatted text from a single font. It 1 

provides information necessary for accurate rendering and supports search and selection 2 

features in viewing consumers. 3 

If the Fill property is not specified, the <Glyphs> element has no visible effect. 4 

Some properties of the <Glyphs> element are composable, meaning that the markings 5 

rendered to the page are determined by a combination of the property and all the like-named 6 

properties of the <Glyphs> element‘s parent and ancestor elements. For details, see §14. 7 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 103 

12.1.1 Glyph Metrics 1 

Each glyph defines metrics that specify how it aligns with other glyphs. The metrics are 2 

illustrated below. 3 

Figure 12–1. Glyph metrics 4 

 5 

Figure 12–2. Upright (usually horizontal) glyph metrics 6 

 7 



12. Text XPS Specification and Reference Guide 

104 Working Draft 1.2, May 2008 

Figure 12–3. Sideways (usually vertical) glyph metrics 1 

 2 

In general, glyphs within a font are either base glyphs or combining marks that can be attached 3 

to base glyphs. Base glyphs usually have an advance width that is non-zero, and a 0,0 offset 4 

vector. Combining marks usually have a zero advance width. The offset vector can be used to 5 

adjust the position of a combining mark and, therefore, can have a non-0,0 value for combining 6 

marks. 7 

The position of each glyph in the glyph run is controlled by the following values: 8 

 Origin. Each glyph is assumed to be given a nominal origin. For the first glyph in the run, 9 

this is the origin of the run. 10 

 Advance Width. The advance width for each glyph provides the origin of the next glyph 11 

relative to the origin of the current glyph. The advance vector is drawn in the direction 12 

of the run progression. 13 

 Glyph Offset (Base or Mark). The glyph offset vector adjusts the position of this glyph 14 

relative to its nominal origin. The orientation of the glyph offset vector is not affected by 15 

the value of the IsSideways attribute, but is affected by the value of the BidiLevel 16 

attribute. 17 

12.1.2 Mapping Code Units to Glyphs 18 

A Unicode scalar value in a UnicodeString attribute is typically represented by a single UTF-16 19 

code unit and has a single corresponding glyph representation in the font. More complex 20 

mapping scenarios are common in non-Latin scripts: a single Unicode scalar value can map to 21 

two UTF-16 code units, multiple UTF-16 code units can map to a single glyph, single UTF-16 22 

code units can map to multiple glyphs based on context, and multiple UTF-16 code units can 23 

map indivisibly to multiple glyphs. In these cases, the clusters of UTF-16 code units are mapped 24 

using a cluster map. 25 

The cluster map contains one entry for each UTF-16 code unit in the UnicodeString attribute. 26 

Each entry specifies the offset of the first glyph that represents the cluster of UTF-16 code 27 

units. 28 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 105 

12.1.2.1 One-to-One Mappings 1 

When each UTF-16 code unit is represented by exactly one glyph, the cluster map entries are 0, 2 

1, 2, and so on.  3 

Example 12–1. One-to-one cluster map 4 

Each character in the word ―file‖ is represented by a single glyph. 5 

  6 

end example] 7 

12.1.2.2 Many-to-One Mappings 8 

When two or more UTF-16 code units map to a single glyph, the entries for those UTF-16 code 9 

units specify the offset of that glyph in the glyph index buffer.  10 

Example 12–2. Many-to-one cluster map 11 

In the following mapping, the f and i characters are replaced by a ligature. 12 

  13 

end example] 14 



12. Text XPS Specification and Reference Guide 

106 Working Draft 1.2, May 2008 

12.1.2.3 One-to-Many Mappings 1 

When one UTF-16 code unit maps to two or more glyphs, the value in the cluster map for that 2 

UTF-16 code unit references the first glyph in the Indices attribute that represents that UTF-16 3 

code unit.  4 

Example 12–3. One-to-many cluster map 5 

The Thai Sara Am character contains a part that sits on top of the previous base character (the 6 

ring), and a part that sits to the right of the base character (the hook). When Thai text is 7 

micro-justified, the hook is spaced apart from the base character, while the ring remains on top 8 

of the base character. Many fonts encode the ring and the hook as separate glyphs. 9 

 10 

The markup appears as follows: 11 

<Glyphs 12 

 FontUri="../Resources/Fonts/browau.ttf" 13 

 UnicodeString="&#xe20;&#xe3149;&#xe33;&#x21;" 14 

 Indices="153;106,,,16;(1:2)124;198;4" 15 

 OriginX="10" OriginY="60" 16 

 FontRenderingEmSize="70" 17 

 Fill="#000000"/> 18 

The markup above is rendered as follows: 19 

  20 

end example] 21 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 107 

12.1.2.4 Many-to-Many Mappings 1 

In some fonts, an indivisible group of UTF-16 code units for a character maps to more than one 2 

glyph. This is common in fonts that support Indic scripts. When an indivisible group of UTF-16 3 

code units maps to one or more glyphs, the value in the cluster map for each of the UTF-16 4 

code units references the first glyph in the Indices attribute representing that codepoint.  5 

Example 12–4. Many-to-many cluster map 6 

The following mapping shows the Unicode and glyph representations of a Tamil word that has 7 

two glyph clusters. Each cluster has a base character and a combining mark. The first pair of 8 

UTF-16 code units generates three glyphs because the combining mark splits both sides of the 9 

base character. The second pair of UTF-16 code units is represented by a single glyph that 10 

incorporates the effect of the combining mark. 11 

  12 

 ப ோ   த    
Unicode String oBAA oBCB oBA4 oBC1 

     

ClusterMap 0 0 3 3 

 
    

GlyphIndices 94 76 88 162 

(Latha Font) ோ  ப    து 

 13 

The markup appears as follows: 14 

<Glyphs 15 

 FontUri="../Resources/Fonts/latha.ttf" 16 

 UnicodeString="&#xbaa;&#xbcb;&#xba4;&#xbc1;" 17 

 Indices="(2:3)94;76;88;(2:1)162" 18 

 OriginX="10" OriginY="120" 19 

 FontRenderingEmSize="40" 20 

 Fill="#000000"/> 21 



12. Text XPS Specification and Reference Guide 

108 Working Draft 1.2, May 2008 

The markup above is rendered as follows: 1 

  2 

end example] 3 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 109 

12.1.3 Indices Attribute 1 

The <Glyphs> element MAY have an Indices attribute [M2.72]. The glyph specifications within 2 

the Indices attribute are OPTIONAL [M2.72]. The GlyphIndex portion of the Indices attribute MAY 3 

be used to specify a series of glyphs, complex character-to-glyph cluster mappings, or a 4 

combination of both [M2.72]. The Indices attribute MAY also include glyph placement 5 

information [M2.72]. 6 

Within the Indices attribute, each glyph specification is separated by a semicolon. The Indices 7 

attribute MUST adhere to the glyph specification syntax as follows [M2.72]:  8 

GlyphIndices   = *1GlyphMapping *( ";" *1GlyphMapping ) 9 

GlyphMapping   = *1([ClusterMapping] GlyphIndex) [GlyphMetrics] 10 

ClusterMapping = "(" ClusterCodeUnitCount [":" ClusterGlyphCount] ")" 11 

ClusterCodeUnitCount = 1*DIGIT 12 

ClusterGlyphCount    = 1*DIGIT 13 

GlyphIndex     = *DIGIT 14 

GlyphMetrics   = "," *1AdvanceWidth ["," *1uOffset ["," vOffset]] 15 

AdvanceWidth   = ["+"] RealNum 16 

uOffset        = ["+" | "-"] RealNum 17 

vOffset        = ["+" | "-"] RealNum 18 

RealNum        = ((1*DIGIT ["." 1*DIGIT]) | ("." 1*DIGIT)) [Exponent] 19 

Exponent       = *1( ("E"|"e") ("+"|"-") 1*DIGIT ) 20 

The sum of the code unit counts for all the GlyphMapping entries in the Indices attribute MUST 21 

NOT exceed the number of UTF-16 code units in the UnicodeString attribute if the UnicodeString 22 

attribute is specified and does not contain an empty value (―‖ or ―{}‖). If a ClusterMapping is 23 

not specified within a GlyphMapping entry, the code unit count is 1 [M5.4]. If the Indices 24 

attribute specifies a GlyphIndex that does not exist in the font, the consumer MUST generate 25 

an error [M5.24M5.4]. If the Indices attribute is specified, the values provided MUST be used in 26 

preference to values determined from the UnicodeString attribute alone [M5.23]. 27 

Table 12–3. Glyph specifications 28 

Name Description 

GlyphIndex Index of the glyph (16-bit) in the physical font. The entry MAY be 

empty [M2.72], in which case the glyph index is determined by 

looking up the UTF-16 code unit in the font character map table. If 

there is not a one-to-one mapping between code units and the 

glyph indices, this entry MUST be specified [M5.5]. 

In cases where character-to-glyph mappings are not one-to-one, a 

cluster mapping specification precedes the glyph index (further 

described below). 

AdvanceWidth Advance width indicating placement for the subsequent glyph, 

relative to the origin of the current glyph. Measured in direction of 

advance as defined by the IsSideways and BidiLevel attributes. Base 

glyphs generally have a non-zero advance width and combining 

glyphs have a zero advance width. 

Advance width is measured in hundredths of the font em size. The 

default value is defined in the horizontal metrics font table (hmtx) if 

the IsSideways attribute is specified as false or the vertical metrics 

font table (vmtx) if the IsSideways attribute is specified as true. 

Advance width is a real number with units specified in hundredths of 



12. Text XPS Specification and Reference Guide 

110 Working Draft 1.2, May 2008 

an em.  

So that rounding errors do not accumulate, the advance MUST be 

calculated as the exact unrounded origin of the subsequent glyph 

minus the sum of the calculated (that is, rounded) advance widths 

of the preceding glyphs [M5.6]. 

The advance MUST be 0 or greater [M2.72]. The right-to-left writing 

direction can be specified using the BidiLevel attribute. 

uOffset, vOffset Offset in the effective coordinate space relative to glyph origin to 

move this glyph (x offset for uOffset and –y offset for vOffset. The 

sign of vOffset is reversed from the direction of the y axis. A 

positive vOffset value shifts the glyph by a negative y offset and 

vice versa.). Used to attach marks to base characters. The value is 

added to the nominal glyph origin calculated using the advance 

width to generate the actual origin for the glyph. The setting of the 

IsSideways attribute does not change the interpretation of uOffset 

and vOffset. 

Measured in hundredths of the font em size. The default offset 

values are 0.0,0.0. uOffset and vOffset are real numbers. 

Base glyphs generally have a glyph offset of 0.0,0.0. Combining 

glyphs generally have an offset that places them correctly on top of 

the nearest preceding base glyph.  

For left-to-right text, a positive uOffset value points to the right; for 

right-to-left text, a positive uOffset value points to the left. 

Example 12–5. Using indices to specify advance width 1 

The following Indices attribute specifies that the seventh glyph in the Unicode string has an 2 

advance width of 40: 3 

Indices = ";;;;;;,40" 4 

end example] 5 

12.1.3.1 Specifying Character-to-Glyph Mappings 6 

A cluster map specification MAY precede the glyph specification for the first glyph of the cluster 7 

[M2.72]. 8 

Empty Indices attribute values indicate that the corresponding UTF-16 code unit within the 9 

Unicode string has a one-to-one relationship with the glyph index as specified by the character 10 

mapping table within the font. 11 

Cluster maps that specify 0:n or n:0 mappings are invalid. 12 

See the glyph specification syntax above for details of how to specify cluster maps.  13 

Table 12–4. Portions of the cluster specification 14 

Name Description 

ClusterCodeUnitCount  Number of UTF-16 code units that combine to form this cluster. One or 

more code units can be specified. Default value is 1. 

ClusterGlyphCount Number of glyph indices that combine to form this cluster. One or more 

indices can be specified. Default value is 1. 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 111 

Example 12–6. Using the Indices attribute to specify glyph replacement for a cluster 1 

The following Indices attribute specifies that the sixth and seventh UTF-16 code units in the 2 

Unicode string should be replaced by a single glyph having an index of 191: 3 

Indices = ";;;;;(2:1)191" 4 

end example] 5 

12.1.4 UnicodeString Attribute 6 

The UnicodeString attribute holds the array of Unicode scalar values that are represented by the 7 

current <Glyphs> element. Specifying a Unicode string is RECOMMENDED, as it supports 8 

searching, selection, and accessibility [S5.5]. If the Unicode string contains Unicode scalar 9 

values that require two UTF-16 code units, a cluster map with a many-to-one or many-to-many 10 

mapping MUST be specified for the values [M5.5]. 11 

The standard XML escaping mechanisms are used to specify XML-reserved characters. An 12 

additional mechanism MUST be used to escape a UnicodeString attribute value that begins with 13 

an open brace (―{‖) [M5.7]. 14 

In order to use an open brace at the beginning of the Unicode string, it MUST be escaped with a 15 

prefix of ―{}‖ [M5.7]. If the UnicodeString attribute value starts with ―{}‖, consumers MUST 16 

ignore those first two characters in processing the Unicode string and in calculating index 17 

positions for the characters of the Unicode string [M5.7].  18 

If the UnicodeString attribute specifies an empty string (―‖ or ―{}‖), and the Indices attribute is 19 

missing or is also empty, it MUST be treated as an error [M5.2]. If the UnicodeString attribute 20 

contains a Unicode code unit that cannot be mapped to a glyph index via a cmap table in the 21 

font and there is no corresponding GlyphIndex entry in the Indices attribute, the consumer 22 

MUST display the .notdef glyph [M5.9]. 23 

Producers MAY include Unicode control marks in the Unicode string [O5.1]. Such marks include 24 

control codes, layout controls, invisible operators, deprecated format characters, variation 25 

selectors, non-characters, and specials, according to their definition within the Unicode 26 

specification. If producers include control marks in the Unicode string, they SHOULD include an 27 

Indices attribute to specify glyph indices and/or character-to-glyph mapping information for the 28 

control marks [S5.2]. In the absence of such information, consumers MUST treat Unicode 29 

control marks like ordinary characters and render the glyphs to which the Unicode control 30 

marks are mapped in the CMAP table [M5.10]. The resulting glyphs might produce an 31 

inappropriate rendering of the original Unicode string. 32 

Producers MAY choose to generate UnicodeString attribute values that are not normalized by any 33 

Unicode-defined algorithm [O5.2]. Because advance-widths, glyph indices, and caret-stops are 34 

associated with the generated Unicode string, consumers MUST NOT normalize the UnicodeString 35 

attribute value to produce an internal representation [M5.11]. See §9.1.7.5 for details and 36 

exceptions. 37 

12.1.5 StyleSimulations Attribute 38 

Synthetic style simulations can be applied to the shape of the glyphs by using the 39 

StyleSimulations attribute. Style simulations can be applied in addition to the designed style of a 40 

font. The default value for the StyleSimulations attribute is None, in which case the shapes of 41 

glyphs are not modified from their original design. 42 



12. Text XPS Specification and Reference Guide 

112 Working Draft 1.2, May 2008 

When the StyleSimulations value is specified as BoldSimulation, synthetic emboldening is applied 1 

by geometrically widening the strokes of glyphs by 1% of the em size, so that the centers of 2 

strokes remain at the same position. This leaves the baseline origin unmodified. The black box 3 

grows 1% all around for a total of 2% horizontal and 2% vertical. As a result, the character 4 

height and the advance width of each glyph are increased by 2% of the em size. Producers 5 

MUST lay out algorithmically emboldened glyphs using advance widths that are 2% of the em 6 

size larger than when not algorithmically emboldened [M5.12].  7 

Consumers MUST implement the effect of algorithmic emboldening such that the black box of 8 

the glyph grows by 2% of the em size [M5.13]. When advance widths are omitted from the 9 

markup and the glyphs are algorithmically emboldened, the advance widths obtained from the 10 

horizontal metrics font table (if IsSideways is false) or the vertical metrics font table (if 11 

IsSideways is true) of the font MUST be increased by 2% of the em size [M5.13]. 12 

When StyleSimulations is specified as ItalicSimulation, synthetic italicizing is applied to glyphs 13 

with an IsSideways value of false by skewing the top edge of the alignment box of the character 14 

by 20° to the right, relative to the baseline of the character. Glyphs with an IsSideways value of 15 

true are italicized by skewing the right edge of the alignment box of the character by 20° down, 16 

relative to the baseline origin of the glyph. The character height and advance width are not 17 

modified. Producers MUST lay out algorithmically italicized glyphs using exactly the same 18 

advance widths as when not algorithmically italicized [M5.14]. 19 

When StyleSimulations is specified as BoldItalicSimulation, both BoldSimulation and 20 

ItalicSimulation are applied, in order. 21 

12.1.6 IsSideways Attribute 22 

Glyphs for text in vertical writing systems are normally represented by rotating the coordinate 23 

system and using the IsSideways attribute. <Glyphs> elements with the IsSideways attribute set 24 

to true will be rotated 90° counter-clockwise and placed so that the sideways baseline origin is 25 

coincident with the nominal origin of the character (within the glyph-local coordinate space), as 26 

modified by the offset vector in the Indices attribute. The advance vector places the nominal 27 

origin of the next character a distance along the direction of progression of the run. The 28 

direction of the advance vector is unaffected by IsSideways, however the method by which the 29 

size of the advance vector is chosen is different. 30 

[Example: To represent a run of characters top to bottom on a page, a render transform can be 31 

used to rotate the <Glyphs> coordinate system 90° clockwise. OriginX and OriginY can be used 32 

to specify a position at the top of the column of text. Text from a vertical writing system can 33 

then be written using <Glyphs> elements with the IsSideways attribute set to true. The 34 

individual glyphs appear in the normal orientation because the rotation effected by the 35 

IsSideways attribute undoes the effect of the render transform. end example] 36 

Text from horizontal writing systems can be included in the column by using <Glyphs> 37 

elements without specifying IsSideways, or using a value of false for it. The rotated coordinate 38 

system makes them appear top to bottom on the page, but with the glyphs rotated to the right. 39 

If alternate vertical character representations are available in the font, the producer SHOULD 40 

use those and provide their glyph indices in the Indices attribute [S5.3]. 41 

12.1.6.1 Calculating Sideways Text Origin and Advance Width 42 

The formulas below describe the method used to calculate each glyph‘s nominal origin, which is 43 

used for positioning the glyphs on the fixed page and for calculating the default advance width 44 

for each glyph. 45 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 113 

The origin is the top center of the unturned glyph. The x origin of the unturned glyph is 1 

calculated to be exactly one-half the advance width of the glyph, as specified in the horizontal 2 

metrics table of the font. This formula is expressed as follows (in pseudocode): 3 

TopOriginX = hmtx.advanceWidth[GlyphIndex] / 2 4 

If the font is a CFF OpenType font, the y origin of the unturned glyph is determined from the 5 

vertical origin (vorg) table for the font, which can be specified for a particular glyph index but 6 

falls back to the default vertical origin if the glyph index is not present in the vertical origin 7 

table. This formula is expressed as follows (in pseudocode): 8 

TopOriginY = vorg.vertOriginY[glyphIndex]  9 

or: 10 

TopOriginY = vorg.defaultVertOriginY 11 

If the vertical origin table is not present, the glyph data (glyf) and vertical metrics (vmtx) font 12 

tables are consulted. The glyph bounding box is retrieved from the glyph data table and added 13 

to the top side-bearing for the glyph, specified in the vertical metrics table. This formula is 14 

expressed as follows (in pseudocode): 15 

TopOriginY = glyf.yMax[glyphIndex] + vmtx.topSideBearing[glyphIndex] 16 

[Note: CFF fonts do not contain the glyf.yMax information; instead the yMax for each glyph is 17 

computed by calculating the top of the glyph‘s bounding box from the CFF charstring data. end 18 

note] 19 

If the vertical metrics font table does not exist but the Windows-specific metrics (OS/2) table 20 

does exist, the latter table is consulted and the sTypoAscender value is used. This formula is 21 

expressed as follows (in pseudocode): 22 

TopOriginY = os/2.sTypoAscender 23 

Descender = abs(os/2.typoDescender) 24 

In all other circumstances, the Ascender value from the horizontal header (hhea) table is used. 25 

This formula is expressed as follows (in pseudocode): 26 

TopOriginY = hhea.Ascender 27 

Descender = abs(hhea.Descender) 28 

Finally, the advance width for sideways text is computed as follows (in pseudocode), unless 29 

specifically overridden by the Indices attribute: 30 

AdvanceWidth = TopOriginY + Descender 31 

12.1.6.2 IsSideways and BidiLevel Effects on Glyph Positioning 32 

Right-to-left text (BidiLevel attribute value of 1) changes the direction of the AdvanceWidth and 33 

uOffset (horizontal offset) values of the Indices attribute, as well as the position of the glyph 34 

origin. Vertical text (IsSideways attribute set to true) changes the position of the glyph origin.  35 

Producers MUST NOT specify text that is both right-to-left (BidiLevel attribute value of 1) and 36 

vertical (IsSideways attribute set to true) [M5.15]. 37 



12. Text XPS Specification and Reference Guide 

114 Working Draft 1.2, May 2008 

Table 12–5. IsSideways and BidiLevel effects on origin placement 1 

IsSideways BidiLevel Glyph origin Direction of advance width 

and positive uOffset 

Horizontal  

(false) 

Left-to-

right  

(0) 

Left end of horizontal 

advance vector along Latin 

baseline 

To the right 

Horizontal  

(false) 

Right-to-

left  

(1) 

Right end of horizontal 

advance vector along Latin 

baseline 

To the left 

Vertical  

(true) 

Left-to-

right  

(0) 

Top end of vertical advance 

vector through the glyph 

centerline 

To the right 

Vertical  

(true) 

Right-to-

left  

(1) 

Invalid combination  



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 115 

Example 12–7. Text with positive uOffset and vOffset Indices values 1 

In this example, the position of the glyphs is shown relative to the origin shown at the crossed 2 

lines centered at 100,100. The text in gray shows where this text would be rendered without 3 

modification of the uOffset and vOffset value of the Indices attributes. 4 

<Glyphs Fill="#000000" FontRenderingEmSize="48"  5 

 OriginX="100" OriginY="100"  6 

 UnicodeString="AFQ"  7 

 Indices=";,100,30,10;" 8 

 FontUri="../Resources/Fonts/Arial.ttf" /> 9 

  10 

end example] 11 

Example 12–8. Right-to-left text (odd BidiLevel) 12 

The markup for this example matches the previous example, except the BidiLevel attribute is set 13 

to 1. Note the change in the origin, and the reversal of the glyph advance direction. 14 

<Glyphs Fill="#000000" FontRenderingEmSize="48"  15 

 OriginX="100" OriginY="100"  16 

 UnicodeString="AFQ"  17 

 Indices=";,100,30,10;" 18 

 BidiLevel="1" 19 

 FontUri="../Resources/Fonts/Arial.ttf" /> 20 

  21 

end example] 22 



12. Text XPS Specification and Reference Guide 

116 Working Draft 1.2, May 2008 

Example 12–9. Sideways text (IsSideways set to true) 1 

This example shows the IsSideways attribute set to true. The BidiLevel must MUST be even 2 

when the IsSideways attribute is set to true [M5.15]. Note that the origin has changed to be the 3 

top-center of the first glyph, with each glyph rotated 90° counter-clockwise. The interpretation 4 

of the advance direction and uOffset and vOffset values in the Indices attribute are otherwise 5 

unchanged. 6 

<Glyphs Fill="#000000" FontRenderingEmSize="48"  7 

 OriginX="100" OriginY="100"  8 

 UnicodeString="AFQ"  9 

 Indices=";,100,30,10;" 10 

 IsSideways="true" 11 

 FontUri="../Resources/Fonts/Arial.ttf" /> 12 

  13 

end example] 14 

Example 12–10. Vertical text 15 

The markup for this example matches the previous example, with the addition of a render 16 

transformation to rotate and position the element as vertical text. For more information on 17 

render transformations, see §14.4. 18 

<Glyphs Fill="#000000" FontRenderingEmSize="48"  19 

 OriginX="100" OriginY="100"  20 

 UnicodeString="AFQ"  21 

 Indices=";,100,30,10;" 22 

 IsSideways="true" 23 

 FontUri="../Resources/Fonts/Arial.ttf"  24 

 RenderTransform="0,1,-1,0,200,0" /> 25 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 117 

  1 

end example] 2 

Example 12–11. Japanese vertical text 3 

This example demonstrates a real-world usage of vertical text. Japanese text is shown below 4 

where the text is read down each column, from right to left across the page. The IsSideways 5 

attribute is set to true, thus rotating the each glyph 90° counter-clockwise. Then, the 6 

RenderTransform attribute (see §14.4) rotates the overall block of text 90° clockwise to achieve 7 

the final result of columns of text. 8 

<Glyphs Fill="#000000" FontRenderingEmSize="24" OriginX="10" OriginY="10" 9 

 UnicodeString="これは、縦書きの日本語テキストが"  10 

 FontUri="../Resources/Fonts/msmincho.ttf" IsSideways="true"  11 

 RenderTransform="0,1,-1,0,145,0"/> 12 

<Glyphs Fill="#000000" FontRenderingEmSize="24" OriginX="10" OriginY="45" 13 

 UnicodeString="どのように列で書かれるかの例です。"  14 

 FontUri="../Resources/Fonts/msmincho.ttf" IsSideways="true"  15 

 RenderTransform="0,1,-1,0,145,0"/> 16 

<Glyphs Fill="#000000" FontRenderingEmSize="24" OriginX="10" OriginY="80" 17 

 UnicodeString="テキストは縦に読み、一行ずつ進みます。"  18 

 FontUri="../Resources/Fonts/msmincho.ttf" IsSideways="true"  19 

 RenderTransform="0,1,-1,0,145,0"/> 20 

<Glyphs Fill="#000000" FontRenderingEmSize="24" OriginX="10"  21 

 OriginY="115" UnicodeString="他の言語も縦書きで書かれます。"  22 

 FontUri="../Resources/Fonts/msmincho.ttf" IsSideways="true"  23 

 RenderTransform="0,1,-1,0,145,0"/> 24 



12. Text XPS Specification and Reference Guide 

118 Working Draft 1.2, May 2008 

This markup is rendered as follows: 1 

 2 

end example] 3 

12.1.7 DeviceFontName Attribute 4 

Printer device fonts are specified by the DeviceFontName attribute. Device manufacturers define 5 

the values for this attribute. Producers SHOULD NOT produce markup that will result in different 6 

rendering between consumers using the embedded font to render and consumers using the 7 

device font to render [S5.4]. 8 

Consumers that understand the device font name MAY ignore the embedded font and use the 9 

device-resident version [O5.3]. By definition, a consumer ―understands‖ a printer device font if 10 

it can unambiguously correlate the device font name to a set of font metrics resident on the 11 

device. If a consumer does not understand the specified device font name, it MUST render the 12 

embedded version of the font [M5.16]. 13 

When rendering a printer device font, consumers MUST use the UnicodeString attribute and 14 

ignore the glyph index components of the Indices attribute [M5.17]. The consumer MUST still 15 

honor the advance width and x,y offset values present in the Indices attribute [M5.18]. 16 

For producers, a <Glyphs> element with a specified device font name MUST have exactly one 17 

Indices glyph per code unit in the UnicodeString attribute. Its Indices attribute MUST NOT include 18 

any cluster specifications. If the Indices attribute includes a cluster mapping, the consumer 19 

MUST NOT use the device font and MUST render the embedded version of the font [M5.19]. 20 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 119 

This means that a device font cannot be used for characters outside the basic multilingual plane 1 

(BMP). 2 

If a device font name is specified, each of the <Glyphs> element‘s  Indices glyphs MUST include 3 

a specified advance width and MUST include specified x and y offset values if they are non-zero 4 

[M5.20].  5 

12.1.8 xml:lang Attribute 6 

XPS Document consumers might need to override the default language for a specific run of 7 

glyphs, particularly in multilingual documents. The language defaults to the value specified for 8 

the xml:lang attribute of the <FixedPage> element but MAY be overridden by an xml:lang 9 

attribute on a <Glyphs> element [M2.72]. For larger blocks of text, the producer MAY specify 10 

the xml:lang attribute on the <Canvas> element [M2.72]. 11 

The language specified does not affect rendering of <Glyphs> elements, but it can be used by 12 

consumers for searching or selecting text. For more information, see §9.3.5.  13 

12.1.9 CaretStops Attribute 14 

The CaretStops attribute contains an array of Boolean bit-flags, which is represented as a string 15 

of hexadecimal characters. The flags indicate whether it is legal to place the caret before the 16 

corresponding UTF-16 code unit in the UnicodeString attribute. (―Before‖ refers to a logical 17 

placement, not a physical placement.) [Example: If the flag is set in right-to-left text, the caret 18 

can be placed before (to the right of) that UTF-16 code unit. end example] The CaretStops 19 

attribute includes a final flag for placement of the caret following the final UTF-16 code unit in 20 

the Unicode string. 21 

Each hexadecimal character in the CaretStops value represents the flags for four UTF-16 code 22 

units in the Unicode string, with the highest-order bit representing the first UTF-16 code unit. 23 

Any unused bits in the last UTF-16 code unit must be 0. 24 

If the CaretStops attribute is omitted, it is legal to place the caret before any of the UTF-16 code 25 

units in the Unicode string. Therefore, omitting the CaretStops attribute is equivalent to 26 

specifying a string that has all the bits set to 1. If there are insufficient flags in the CaretStops 27 

string to correspond to all the UTF-16 code units in the Unicode string, all remaining UTF-16 28 

code units in the Unicode string MUST be considered valid caret stops [M5.22]. 29 

Example 12–12. Using the CaretStops attribute to determine a valid caret stop position 30 

Given the following attributes, the m in ―example‖ is not a valid caret stop position: 31 

UnicodeString = "This is an example string of text." 32 

CaretStops = "fffd" 33 

end example] 34 

12.1.10 Optimizing Glyph Markup 35 

Markup details such as glyph indices and advance widths can be omitted from the markup 36 

under the circumstances described below. The following options allow optimization of commonly 37 

used simple scripts. 38 

12.1.10.1 Optimizing Glyph Indices Markup 39 

Glyph indices MAY be omitted from markup where all of the following are true [O5.4]: 40 



12. Text XPS Specification and Reference Guide 

120 Working Draft 1.2, May 2008 

 There is a one-to-one mapping between the positions of Unicode scalar values in the 1 

UnicodeString attribute and the positions of glyphs in the glyph string.  2 

 The glyph index is the value in selected character mapping table of the font.  3 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 121 

12.1.10.2 Optimizing Glyph Position Markup 1 

Glyph advance width MAY be omitted from the markup in the following cases [O5.5]: 2 

 For glyphs that have not been algorithmically emboldened, the desired advance width is 3 

the value listed in the horizontal metrics font table (if the IsSideways attribute value is 4 

false) or as calculated in §12.1.6.1 (if the IsSideways attribute value is true). 5 

 For algorithmically emboldened glyphs, the desired advance width is exactly 2% larger 6 

than the values in the horizontal metrics font table (if the IsSideways attribute value is 7 

false) or as calculated in §12.1.6.1 (if the IsSideways attribute value is true). 8 

Glyph horizontal offset MAY be omitted from the markup when the offset is 0.0, and Glyph 9 

vertical offset MAY be omitted from the markup when the offset is 0.0 [O5.6]. This is almost 10 

always true for base characters, and commonly true for combining marks in simple scripts. 11 

However, this is often false for combining marks in complex scripts such as Arabic and Indic. 12 

12.1.11 Glyph Markup Examples 13 

Example 12–13. Basic italic font 14 

<Canvas> 15 

   <Glyphs  16 

      FontUri="../Resources/Fonts/Timesi.ttf"  17 

      FontRenderingEmSize="20" 18 

      OriginX="35" 19 

      OriginY="35" 20 

      UnicodeString="Basic italic font..." 21 

      Fill="#009900" /> 22 

</Canvas> 23 

This text is rendered as follows: 24 

  25 

end example] 26 

Example 12–14. Italic font using StyleSimulations attribute 27 

<Canvas> 28 

   <Glyphs  29 

      FontUri="../Resources/Fonts/Times.ttf"  30 

      FontRenderingEmSize="20" 31 

      StyleSimulations="ItalicSimulation" 32 

      OriginX="35" 33 

      OriginY="35" 34 

      UnicodeString="Simulated italic font..." 35 

      Fill="#009900" /> 36 

</Canvas> 37 

This text is rendered as follows: 38 



12. Text XPS Specification and Reference Guide 

122 Working Draft 1.2, May 2008 

  1 

end example] 2 

Example 12–15. Kerning 3 

<Canvas> 4 

 5 

   <!-- "WAVE" without kerning --> 6 

 7 

   <Glyphs  8 

      OriginX="35"  9 

      OriginY="35" 10 

      UnicodeString="WAVE (no kerning)" 11 

      FontUri="../Resources/Fonts/Times.ttf" 12 

      FontRenderingEmSize="20" 13 

      Fill="#009900" /> 14 

 15 

   <!-- "WAVE" with kerning --> 16 

 17 

   <Glyphs  18 

      OriginX="35"  19 

      OriginY="70" 20 

      UnicodeString="WAVE (with kerning)" 21 

      Indices=",88;,59" 22 

      FontUri="../Resources/Fonts/Times.ttf" 23 

      FontRenderingEmSize="20" 24 

      Fill="#009900" /> 25 

 26 

</Canvas> 27 

This text is rendered as follows: 28 

  29 

end example] 30 

Example 12–16. Ligatures 31 

<Canvas> 32 

 33 

   <!-- "Open file" without "fi" ligature --> 34 

 35 

   <Glyphs 36 

      OriginX="35"  37 

      OriginY="35" 38 

      UnicodeString="Open file (no ligature)" 39 

      FontUri="../Resources/Fonts/Times.ttf" 40 

      FontRenderingEmSize="20" 41 

      Fill="#009900" /> 42 



XPS Specification and Reference Guide 12. Text 

 Working Draft 1.2, May 2008 123 

 1 

   <!-- "Open file" with "fi" ligature --> 2 

 3 

   <Glyphs 4 

      OriginX="35"  5 

      OriginY="70" 6 

      UnicodeString="Open file (with ligature)" 7 

      Indices=";;;;;(2:1)191" 8 

      FontUri="../Resources/Fonts/Times.ttf" 9 

      FontRenderingEmSize="20" 10 

      Fill="#009900" /> 11 

 12 

</Canvas> 13 

This text is rendered as follows: 14 

  15 

end example] 16 

Example 12–17. Cluster maps 17 

<Canvas> 18 

 19 

   <!-- "ёжик в тумане" using pre-composed "ё" --> 20 

 21 

   <Glyphs  22 

      OriginX="35"  23 

      OriginY="35" 24 

      xml:lang="ru-RU" 25 

      UnicodeString="ёжик в тумане" 26 

      FontUri="../Resources/Fonts/Times.ttf" 27 

      FontRenderingEmSize="20" 28 

      Fill="#009900" /> 29 

 30 

   <!-- "ёжик в тумане" using composition of "e" and diaeresis --> 31 

 32 

   <Glyphs  33 

      OriginX="35"  34 

      OriginY="70" 35 

      xml:lang="ru-RU" 36 

      UnicodeString="ёжик в тумане" 37 

      Indices="(1:2)72;142,0,-40" 38 

      FontUri="../Resources/Fonts/Times.ttf" 39 

      FontRenderingEmSize="20" 40 

      Fill="#009900" /> 41 

 42 

   <!-- "ёжик в тумане" Forced rendering right-to-left showing 43 

   combining mark in logical order --> 44 

 45 

   <Glyphs  46 



12. Text XPS Specification and Reference Guide 

124 Working Draft 1.2, May 2008 

      OriginX="155"  1 

      OriginY="105" 2 

      BidiLevel="1" 3 

      xml:lang="ru-RU" 4 

      UnicodeString="ёжик в тумане" 5 

      Indices="(1:2)72;142,0,-40" 6 

      FontUri="../Resources/Fonts/Times.ttf" 7 

      FontRenderingEmSize="20" 8 

      Fill="#009900" /> 9 

 10 

</Canvas> 11 

This text is rendered as follows: 12 

  13 

end example] 14 

12.2 <Glyphs.Fill> Element 15 

element Glyphs.Fill 16 

diagram 

 

annotation Describes the brush used to fill the shape of the rendered glyphs. 
 

The Fill property specifies the brush that fills a glyph. Any brush can be used.  17 

 18 



XPS Specification and Reference Guide 17. XPS Document Package Features 

 Working Draft 1.2, May 2008 255 

17.1.1 Empty PrintTicket 1 

An empty PrintTicket has the following form: 2 

<psf:PrintTicket 3 

xmlns:psf="http://schemas.microsoft.com/windows/2003/08/printing/printschemaframe4 

work" version="1"/> 5 

It is RECOMMENDED that one empty PrintTicket be shared for all parts that attach an empty 6 

PrintTicket [S10.6]. 7 

17.1.2 Optimizing Interleaving Order 8 

Producers MAY optimize the interleaving order of parts to help consumers avoid stalls during 9 

read-time streaming, and to allow consumers to manage their memory resources more 10 

efficiently [O10.2].  11 

The optimization strategy is suggested by the consumer architecture. Therefore, interleaving 12 

optimization is typically implemented by a software component such as a driver or filter that is 13 

specific to (or aware of) the consumer architecture.  14 

17.1.2.1 Single-Threaded Parsing Architectures 15 

An optimal interleaving scheme for consumers with a single-threaded parsing model interleaves 16 

parts so that each part that is required to consume a single page (FixedPage, images, and 17 

fonts) is contained in the package in its entirety, prior to the FixedPage part being referenced 18 

from the FixedDocument part‘s markup. 19 

Single-threaded parsing architectures typically require more run-time memory resources than 20 

multi-threaded parsing architectures because the context in which a resource is used is 21 

unknown at the time the resource is received. This requires deferred processing and additional 22 

buffering. 23 

[Note: When interleaving entities containing XML markup, such as the DiscardControl part, the 24 

Content Types stream, and the FixedDocument part, there is no guarantee that XML element 25 

boundaries will align with piece boundaries in the physical package. This adds a complexity to 26 

single-threaded parsing architectures: the parser must be pre-emptable. Certain existing XML 27 

parser implementations might require a pre-tokenization step. end note] 28 

Example 17–1. Optimized interleaving for a single-threaded parsing architecture 29 

The following markup describes a sequence of two fixed documents, the first having two 30 

FixedPage parts and the second having one FixedPage part: 31 

 32 

Part/Piece Markup 

Font1.ttf ...binary font data... 

Other resources ...resource data... 

Page1 <FixedPage xmlns="http://schemas.microsoft.com 

/xps/2005/06" ...> 

<Glyphs FontURI="Font1.ttf"/> 

</FixedPage> 

Page1.rels <Relationships xmlns= 



17. XPS Document Package Features XPS Specification and Reference Guide 

256 Working Draft 1.2, May 2008 

"http://schemas.openxmlformats.org/package/2006/re

lationships"> 

<Relationship Type= 

"http://schemas.microsoft.com/xps/2005/06 

/required-resource" Target="Font1.ttf"/> 

</Relationships> 

FixedDocument1/[0].piece <FixedDocument xmlns= 

"http://schemas.microsoft.com/xps/2005/06"> 

<PageContent Source="Page1"/> 

Sequence1/[0].piece <FixedDocumentSequence xmlns= 

"http://schemas.microsoft.com/xps/2005/06"> 

<DocumentReference Source="FixedDocument1"/> 

_rels/.rels/[0].piece <Relationships xmlns= 

"http://schemas.openxmlformats.org/package/2006/re

lationships"> 

<Relationship Type="StartPart" Target="Sequence1"/> 

Page2 <FixedPage xmlns= 

"http://schemas.microsoft.com/xps/2005/06" 

...>...</FixedPage> 

FixedDocument1/[1].last.pi

ece 

<PageContent Source="Page2"/> 

</FixedDocument> 

Page3 <FixedPage xmlns= 

"http://schemas.microsoft.com/xps/2005/06" 

...>...</FixedPage> 

FixedDocument2 <FixedDocument xmlns= 

"http://schemas.microsoft.com/xps/2005/06"> 

<PageContent Source="Page3"/> 

</FixedDocument> 

Sequence1/[1].last.piece <DocumentReference Source="FixedDocument2" /> 

</FixedDocumentSequence> 

_rels/.rels/[1].last.piece </Relationships> 

end example] 1 

17.1.2.2 Multi-Threaded Parsing Architectures 2 

An optimal interleaving scheme for consumers with a multi-threaded parsing model interleaves 3 

parts so that each resource part that is required to consume a single page (images and fonts) is 4 

contained in the package after the FixedPage part referencing it. 5 

Multi-threaded parsing architectures typically require less run-time memory resources than 6 

single-threaded parsing architectures because the context in which resources appear is fully 7 

determined and, therefore, resources can be processed immediately. 8 

[Note: When interleaving entities containing XML markup, such as the DiscardControl part, the 9 

content type stream, and the FixedDocument part, there is no guarantee that XML element 10 

boundaries will align with piece boundaries in the physical package. A multi-threaded parsing 11 

architecture is naturally suited to address this problem. end note] 12 



19. Elements XPS Specification and Reference Guide 

310 Working Draft 1.2, May 2008 

element as a named, addressable point in the 

document for the purpose of hyperlinking. 
 

 

annotation Contains markup that describes the rendering of a single page of content. 
 

For more information, see§10.3. 1 

19.17 FixedPage.Resources 2 

element FixedPage.Resources 3 

diagram 

 

annotation Contains the resource dictionary for the <FixedPage> element. 
 

For more information, see §14.2. 4 

19.18 Glyphs 5 
Glyphs 6 

element Glyphs 7 



XPS Specification and Reference Guide 19. Elements 

 Working Draft 1.2, May 2008 311 

diagram 

 

attributes Name   Type   Use   Default   Fixed   Annotation 

BidiLevel       0      Specifies the Unicode algorithm 

bidirectional nesting level. Even 

values imply left-to-right layout, 

odd values imply right-to-left 

layout. Right-to-left layout places 

the run origin at the right side of 

the first glyph, with positive 

advance widths (representing 



19. Elements XPS Specification and Reference Guide 

312 Working Draft 1.2, May 2008 

advances to the left) placing 

subsequent glyphs to the left of the 

previous glyph. Valid values range 

from 0 to 61, inclusive. 
 

CaretStops   ST_CaretStops           Identifies the positions within the 

sequence of Unicode characters at 

which a text-selection tool can 

place a text-editing caret. Potential 

caret-stop positions are identified 

by their indices into the UTF-16 

code units represented by the 

UnicodeString attribute value.  

When this attribute is missing, the 

text in the UnicodeString attribute 

value MUST be interpreted as 

having a caret stop between every 

Unicode UTF-16 code unit and at 

the beginning and end of the text 

[M5.1]. 

The value SHOULD indicate that 

the caret cannot stop in front of 

most combining marks or in front 

of the second UTF-16 code unit of 

UTF-16 surrogate pairs [S5.1]. 
 

DeviceFontName   ST_UnicodeString           Uniquely identifies a specific device 

font. The identifier is typically 

defined by a hardware vendor or 

font vendor. 
 

Fill   ST_RscRefColor           Describes the brush used to fill the 

shape of the rendered glyphs. 
 

FontRenderingEmSize   ST_GEZero  required         Specifies the font size in drawing 

surface units, expressed as a float 

in units of the effective coordinate 

space. A value of 0 results in no 

visible text. 
 

FontUri   xs:anyURI required         The URI of the physical font from 

which all glyphs in the run are 

drawn. The URI MUST reference a 

font contained in the package 

[M2.1]. If the physical font 

referenced is a TrueType Collection 

(containing multiple font faces), 

the fragment portion of the URI is 

a 0-based index indicating which 

font face of the TrueType Collection 

should be used. 
 



XPS Specification and Reference Guide 19. Elements 

 Working Draft 1.2, May 2008 313 

OriginX   ST_Double  required         Specifies the x coordinate of the 

first glyph in the run, in units of the 

effective coordinate space. The 

glyph is placed so that the leading 

edge of its advance vector and its 

baseline intersect with the point 

defined by the OriginX and OriginY 

attributes. 
 

OriginY   ST_Double  required         Specifies the y coordinate of the 

first glyph in the run, in units of the 

effective coordinate space. The 

glyph is placed so that the leading 

edge of its advance vector and its 

baseline intersect with the point 

defined by the OriginX and OriginY 

attributes. 
 

IsSideways   ST_Boolean     false      Indicates that a glyph is turned on 

its side, with the origin being 

defined as the top center of the 

unturned glyph. 
 

Indices   ST_Indices           Specifies a series of glyph indices 

and their attributes used for 

rendering the glyph run. If the 

UnicodeString attribute specifies an 

empty string (―‖ or ―{}‖) and the 

Indices attribute is not specified or 

is also empty, a consumer MUST 

generate an error [M5.2]. 
 

UnicodeString   ST_UnicodeString           Contains the string of text 

rendered by the <Glyphs> 

element. The text is specified as 

Unicode code points. 
 

StyleSimulations   ST_StyleSimulations     None      Specifies a style simulation. Valid 

values are None, ItalicSimulation, 

BoldSimulation, and 

BoldItalicSimulation. 
 

RenderTransform   ST_RscRefMatrix           Establishes a new coordinate frame 

for the glyph run specified by the 

<Glyphs> element. The render 

transform affects clip, opacity 

mask, fill, x origin, y origin, the 

actual shape of individual glyphs, 

and the advance widths. The 

render transform also affects the 

font size and values specified in the 



19. Elements XPS Specification and Reference Guide 

314 Working Draft 1.2, May 2008 

Indices attribute. 
 

Clip   ST_RscRefAbbrGeomF           Limits the rendered region of the 

element. Only portions of the 

<Glyphs> element that fall within 

the clip region (even partially 

clipped characters) produce marks 

on the page. 
 

Opacity   ST_ZeroOne     1.0      Defines the uniform transparency 

of the glyph element. Values range 

from 0 (fully transparent) to 1 

(fully opaque), inclusive. Values 

outside of this range are invalid. 
 

OpacityMask   ST_RscRef           Specifies a mask of alpha values 

that is applied to the glyphs in the 

same fashion as the Opacity 

attribute, but allowing different 

alpha values for different areas of 

the element. 
 

Name   ST_Name           Contains a string value that 

identifies the current element as a 

named, addressable point in the 

document for the purpose of 

hyperlinking. 
 

FixedPage.NavigateUri   xs:anyURI          Associates a hyperlink URI with the 

element. May be a relative 

reference or a URI that addresses a 

resource that is internal to or 

external to the package. 
 

xml:lang             Specifies the default language used 

for the current element. The 

language is specified according to 

RFC 3066. 
 

x:Key             Specifies a name for a resource in 

a resource dictionary. x:Key MUST 

be present when the current 

element is defined in a resource 

dictionary. x:Key MUST NOT be 

specified outside of a resource 

dictionary [M5.3]. 
 

 

annotation Represents a run of text from a single font. 
 

For more information, see §12.1, §9.1.7, and §12.1.3. 1 



H. Standard Namespaces and Content Types XPS Specification and Reference Guide  

402 Working Draft 1.2, May 2008 

H.2 Content Types 1 

The content types in the tables below MUST NOT include parameters. A consumer MUST treat 2 

the presence of parameters on these content types as an error when the affected part is 3 

accessed [M12.7]. 4 

Table H–3. Package-wide content types 5 

Description Content type 

Core Properties part application/vnd.openxmlformats-package.core-

properties+xml 

Digital Signature Certificate part application/vnd.openxmlformats-

package.digital-signature-certificate 

Digital Signature Origin part application/vnd.openxmlformats-

package.digital-signature-origin 

Digital Signature XML Signature part application/vnd.openxmlformats-

package.digital-signature-xmlsignature+xml 

Relationships part application/vnd.openxmlformats-

package.relationships+xml 

Table H–4. XPS Document content types 6 

Description Content type 

FixedDocument  application/vnd.ms-package.xps-fixeddocument+xml 

FixedDocumentSequence application/vnd.ms-package.xps-

fixeddocumentsequence+xml 

FixedPage application/vnd.ms-package.xps-fixedpage+xml 

DiscardControl application/vnd.ms-package.xps-discard-control+xml 

DocumentStructure application/vnd.ms-package.xps-

documentstructure+xml 

Font application/vnd.ms-opentype 

ICC profile application/vnd.ms-color.iccprofile 

JPEG image image/jpeg 

Obfuscated font application/vnd.ms-package.obfuscated-opentype 

PNG image image/png 

PrintTicket  application/vnd.ms-printing.printticket+xml 

Remote resource dictionary application/vnd.ms-package.xps-

resourcedictionary+xml 

StoryFragments application/vnd.ms-package.xps-storyfragments+xml 

TIFF image image/tiff 

Thumbnail part image/jpeg or image/png 

Windows Media Photo image image/vnd.ms-photo 



XPS Specification and Reference Guide H. Standard Namespaces and Content Types 

 Working Draft 1.2, May 2008 403 

H.3 Relationship Types 1 

Table H–5. Package-wide relationship types 2 

Description Relationship type 

Core Properties  http://schemas.openxmlformats.org/package/2006/rela

tionships/metadata/core-properties 

Digital Signature  http://schemas.openxmlformats.org/package/2006/rela

tionships/digital-signature/signature 

Digital Signature 

Certificate  

http://schemas.openxmlformats.org/package/2006/rela

tionships/digital-signature/certificate 

Digital Signature 

Origin 

http://schemas.openxmlformats.org/package/2006/rela

tionships/digital-signature/origin 

Thumbnail http://schemas.openxmlformats.org/package/2006/rela

tionships/metadata/thumbnail 

Table H–6. XPS Document relationship types 3 

Description Relationship type 

Digital Signature Definitions http://schemas.microsoft.com/xps/2005/06/signature-

definitions 

DiscardControl http://schemas.microsoft.com/xps/2005/06/discard-control 

DocumentStructure http://schemas.microsoft.com/xps/2005/06/documentstructure 

PrintTicket http://schemas.microsoft.com/xps/2005/06/printticket 

Required Resource http://schemas.microsoft.com/xps/2005/06/required-resource  

Restricted Font http://schemas.microsoft.com/xps/2005/06/restricted-font 

StartPart http://schemas.microsoft.com/xps/2005/06/fixedrepresentation  

StoryFragments http://schemas.microsoft.com/xps/2005/06/storyfragments 



XPS Specification and Reference Guide I. Conformance Requirements 

 Working Draft 1.2, May 2008 407 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

M2.3 An XPS Document MUST contain exactly one 

FixedDocumentSequence part per fixed payload. 

9.1, 9.1.2 × v 

M2.4 An XPS Document MUST contain at least one FixedDocument 

part per fixed payload. 

9.1 × v 

M2.5 An XPS Document MUST contain at least one FixedPage part 

per fixed payload. 

9.1 × v 

M2.6 A <Glyphs> element in FixedPage markup MUST reference a 

Font part that exists in the XPS Document. 

9.1 × v 

M2.7 An <ImageBrush> element in FixedPage markup MUST 

reference an Image part that exists in the XPS Document. 

9.1 × v 

M2.8 If FixedPage markup references a Remote Resource Dictionary 

part, it MUST be included in the XPS Document 

9.1 × v 

M2.9 This requirement was removed prior to Edition 1 of this 

specification. 

   

M2.10 Resources, which include fonts, images, color profiles, and 

remote resource dictionaries, that are referenced by URIs in 

FixedPage markup MUST use the Required Resource 

relationship from the FixedPage to the resource. If any 

resource references other resources, the indirectly required 

resource is also targeted by a Required Resource relationship 

from the FixedPage to the indirectly required resource. 

9.1.1 × v 

M2.11 This requirement was removed prior to Edition 1 of this 

specification. 

   

M2.12 A Restricted Font relationship is REQUIRED for each print and 

preview font used, from the FixedDocument part to the preview 

and print Font part. When invoking editing functionality, a 

consumer that is also a producer MUST treat as an error any 

font with the print and preview licensing intent bit set for which 

no Restricted Font relationship has been added to the 

FixedDocument part. Printing and display-only consumers 

MUST consider an XPS Document valid, even if the producer 

failed to properly set the Restricted Font relationship. 

9.1.1, 

9.1.7.2, 

9.1.7.4 

× vE 

M2.13 Exactly one StartPart relationship is REQUIRED.  9.1.1 × v 

M2.14 The StartPart relationship MUST point from the package to the 

FixedDocumentSequence part that is the primary fixed payload 

root. 

9.19.1.2 × v 

M2.15 The order of <DocumentReference> elements in a 

FixedDocumentSequence part MUST be preserved by 

consumers that are also producers. 

9.1.2  ×E 

M2.16 The order of <PageContent> elements in a FixedDocument 

MUST be preserved by consumers that are also producers. 

9.1.3  ×E 

M2.17 JPEG image parts MUST contain images that conform to the 9.1.5.1 × vU 



I. Conformance Requirements XPS Specification and Reference Guide  

408 Working Draft 1.2, May 2008 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

JPEG specification. 

M2.18 PNG image parts MUST contain images that conform to the 

PNG specification. 

9.1.5.2 × vU 

M2.19 The PNG ancillary chunk tRNS MUST be supported. 9.1.5.2  × 

M2.20 The PNG ancillary chunk iCCP MUST be supported. 9.1.5.2  × 

M2.21 The PNG ancillary chunk sRGB MUST be ignored. 9.1.5.2  × 

M2.22 The PNG ancillary chunk cHRM MUST be ignored. 9.1.5.2  × 

M2.23 The PNG ancillary chunk gAMA MUST be ignored. 9.1.5.2  × 

M2.24 The PNG ancillary chunk sBIT MUST be ignored. 9.1.5.2  × 

M2.25 TIFF image parts MUST contain images that conform to the 

TIFF specification 

9.1.5.3 × vU 

M2.26 
XPS Document consumers MUST support baseline TIFF  6.0 

with the tag values described in Table 9–5 for the specified 

TIFF image types, excepting the tags described in §9.1.5.3. 

9.1.5.3  × 

M2.27 If a TIFF file contains multiple image file directories (IFDs), 

consumers MUST use only the first IFD and ignore all others. 

9.1.5.3  × 

M2.28 XPS Document consumers MUST support TIFF images using 

CCITT bilevel encoding. 

9.1.5.3  × 

M2.29 XPS Document consumers MUST support CMYK TIFF images. 9.1.5.3  × 

M2.30 XPS Document consumers MUST support TIFF images with 

associated alpha data. If the ExtraSamples tag is 1, the alpha 

is treated as pre-multiplied alpha. With an ExtraSamples tag of 

2, the alpha is treated as non-pre-multiplied alpha. 

9.1.5.3  × 

M2.31 XPS Document consumers MUST support TIFF images using 

LZW compression. 

9.1.5.3  × 

M2.32 XPS Document consumers MUST support TIFF images using 

differencing predictors. 

9.1.5.3  × 

M2.33 XPS Document consumers MUST support TIFF images using 

JPEG compression (compression mode 6 only). 

9.1.5.3  × 

M2.34 XPS Document consumers MUST support TIFF images with an 

embedded ICC profile. 

9.1.5.3  × 

M2.35 Windows Media Photo image files MUST conform to the 

Windows Media Photo specification. 

9.1.5.4 × vU 

M2.36 Each FixedPage part MUST NOT have more than one thumbnail 

part attached. 

9.1.6 × vT 
TT 

M2.37 Thumbnails MUST be either JPEG or PNG images 9.1.6 × vT 

M2.38 If using a fragment in the FontURI attribute of the <Glyphs> 

element to indicate the font face to use from a TrueType 

Collection, the attribute value MUST be an integer between 0 

9.1.7 × v 



XPS Specification and Reference Guide I. Conformance Requirements 

 Working Draft 1.2, May 2008 409 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

and n–1 inclusive, where n is the number of font faces in the 

TrueType Collection. 

M2.39 All fonts used in XPS Documents MUST adhere to the OpenType 

font format, which includes TrueTyep and CFF fonts. A 

subsetted font MUST still be a valid OpenType font file. 

9.1.7, 9.1.7.1 × v 

M2.40 Producers MUST honor the licensing rights specified in 

OpenType fonts by following the embedding and obfuscation 

mechanisms described in this specification. 

9.1.7.2 ×  

M2.41 Consumers MUST be able to process XPS Documents using any 

combination of the embedding and obfuscation mechanisms 

described in this specification (even if produced in violation of 

the production requirements). 

9.1.7.2  × 

M2.42 For fonts with ―Restricted license embedding‖ licensing intent, 

producers MUST NOT embed the font. 

9.1.7.2 ×  

M2.43 For fonts with ―Print and preview embedding‖ licensing intent, 

consumers MUST NOT edit or modify any part of the XPS 

Document markup or hierarchical structure from the 

FixedDocument containing such a font downwards. 

9.1.7.2, 

9.1.7.4 

 ×E 

M2.44 For fonts with ―Print and preview embedding‖ licensing intent, 

producers MUST perform embedded font obfuscation. 

9.1.7.2 ×  

M2.45 For fonts with ―Print and preview embedding‖ licensing intent, 

consumers MUST NOT extract or permanently install the font. 

9.1.7.2  × 

M2.46 For fonts with ―Editable embedding‖ licensing intent, producers 

MUST perform embedded font obfuscation. 

9.1.7.2 ×  

M2.47 For fonts with ―Editable embedding‖ licensing intent, 

consumers MUST NOT extract or permanently install the font. 

9.1.7.2  × 

M2.48 For fonts with ―No subsetting‖ licensing intent, producers MUST 

perform embedded font obfuscation. 

9.1.7.2 ×  

M2.49 For fonts with ―No subsetting‖ licensing intent, producers MUST 

NOT subset the font. 

9.1.7.2 ×  

M2.50 For fonts with ―No subsetting‖ licensing intent, consumers 

MUST NOT extract or permanently install the font. 

9.1.7.2  × 

M2.51 For fonts with ―Bitmap embedding only‖ licensing intent, 

producers MUST perform embedded font obfuscation for bitmap 

characters only. If no bitmap characters are present in the 

font, the producer MUST NOT embed the font. 

9.1.7.2 ×  

M2.52 For fonts with ―Bitmap embedding only‖ licensing intent, 

consumers MUST NOT extract or permanently install the font. 

9.1.7.2  × 

M2.53 Producers and consumers MUST perform font obfuscation and 

de-obfuscation according to the steps described in §9.1.7.3. 

9.1.7.3 × × 

M2.54 The last segment of the part name for an obfuscated font MUST 9.1.7.3 × v 



I. Conformance Requirements XPS Specification and Reference Guide  

410 Working Draft 1.2, May 2008 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

be the GUID generated during the font obfuscation process, 

with or without an extension. 

M2.55 When processing <Glyphs> elements, the consumer MUST 

select a cmap table from the OpenType font according to Table 

1-8 in §9.1.7.5. All further processing for that font MUST use 

the selected cmap table. 

9.1.7.5 × × 

M2.56 When processing <Glyphs> elements, if a WanSung, Big5, Prc, 

ShiftJis, or MacRoman cmap has been selected, the consumer 

MUST correctly map from Unicode codepoints in the 
UnicodeString attribute to the corresponding codepoints used by 

the cmap before looking up glyphs. 

9.1.7.5  × 

M2.57 When processing <Glyphs> elements that reference a cmap 

(3,0) encoding font, consumers MUST handle the case where 
the UnicodeString attribute contains character codes instead of 

PUA codepoints by computing the correct glyph index according 

to the general recommendations of the OpenType specification. 

9.1.7.5  × 

M2.58 Consumers MUST process all PrintTicket parts when an XPS 

Document is printed. 

9.1.9, 9.1.9.3  ×P 

M2.59 A level-specific PrintTicket MUST contain only settings scoped 

to the current level and child levels. Job-level PrintTicket parts 

MUST contain only job-, document-, and page-scoped settings; 

document-level PrintTicket parts MUST contain only document-

scoped and page-scoped settings; and page-level PrintTicket 

parts MUST contain only page-scoped settings. Print schema 

elements that interact between levels MUST be specified at the 

root of each level ticket. Each FixedDocumentSequence, 

FixedDocument, or FixedPage part MUST have no more than 

one attached PrintTicket. 

9.1.9, 

9.1.9.2, 

9.1.9.3 

×U  

M2.60 Consumers MUST process job-level, document-level and page-

level settings of PrintTicket parts associated with 

FixedDocumentSequence parts. 

9.1.9.2  ×P 

M2.61 Consumers MUST process document-level and page-level 

settings of PrintTicket parts associated with FixedDocument 

parts and MUST ignore job-level settings of PrintTicket parts 

associated with FixedDocument parts. 

9.1.9.2  ×P 

M2.62 Consumers MUST process page-level settings of PrintTicket 

parts associated with FixedPage parts and MUST ignore job-

level and document-level settings of PrintTicket parts 

associated with FixedPage parts. 

9.1.9.2  ×P 

M2.63 When processing a PrintTicket, consumers MUST first remove 

all levels of PrintTicket content not applicable to the current 

element. 

9.1.9.3  ×P 

M2.64 When processing a PrintTicket, consumers MUST second 

validate the PrintTicket according to the methods defined in the 

9.1.9.3  ×P 



I. Conformance Requirements XPS Specification and Reference Guide  

412 Working Draft 1.2, May 2008 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

specification. 

M2.74 Properties MUST NOT be set more than once, regardless of the 

syntax used to specify the value. In certain cases, they can be 

specified using either property attributes or property elements. 

Consumers MUST treat properties that are specified in both 

ways as an error. 

9.3.3.2 × v 

M2.75 XPS Document markup MUST NOT use the xml:space attribute. 9.3.4 × v 

M2.76 The language of the contents of an XPS Document MUST be 

identified using the xml:lang attribute, the value of which is 

inherited by child and descendant elements. When the 

language of the contents is unknown and is required, the value 

―und‖ (undetermined) MUST be used. 

9.3.5.1 ×  

M2.77 Producers that generate a relationship MUST include the target 

part in the XPS Document for any of the following relationship 

types: DiscardControl, DocumentStructure, PrintTicket, 

Required Resource, Restricted Font, StartPart, StoryFragments, 

and Thumbnail. Consumers that access the target part of any 

relationship with one of these relationship types MUST 

generate an error if the part is not included in the XPS 

Document. 

9.1.1 ×U vU 

M2.78 Consumers MUST support JPEG images that contain the APP1 

marker and interpret the EXIF color space correctly. 

9.1.5.19.1.5.2  × 

M2.79 
XPS Document consumers MUST support TIFF images that 

include the EXIF IFD (tag 34665) as described in the EXIF 

specification. The EXIF color space MUST be interpreted 

correctly. 

9.1.5.3  × 

M2.80 
Each <DocumentReference> element in a 

FixedDocumentSequence part MUST reference a 

FixedDocument part by relative URI. 

9.1.2 ×  

M2.81 
Each <PageContent> element in a FixedDocument part MUST 

reference a FixedPage part by relative URI. 

9.1.3 ×  

M2.82 
<ImageBrush> and <Glyphs> elements MUST reference Image 

and Font parts by relative URI. 

9.1.4 ×  

M2.83 
If the ExtraSamples tag value is 0, the associated alpha data in 

this channel MUST be ignored 

9.1.5.3  × 



I. Conformance Requirements XPS Specification and Reference Guide  

414 Working Draft 1.2, May 2008 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

circulation, consumers SHOULD test as many different TIFF 

images as possible, correct common mistakes in TIFF 

images, and implement a reasonable recovery strategy when 

a problematic TIFF image is encountered. 

S2.12 It is RECOMMENDED that Windows Media Photo images end 

with the extension ―.wdp‖. 

9.1.5.4 ×  

S2.13 It is RECOMMENDED that if thumbnails are used for pages, a 

thumbnail SHOULD be included for every page in the 

document. 

9.1.6 ×  

S2.14 Consumers SHOULD only process thumbnails associated via 

a package relationship from the package as a whole or via a 

relationship from a FixedPage part. Thumbnails attached to 

any other part SHOULD be ignored. 

9.1.6  × 

S2.15 Producers SHOULD use Unicode-encoded fonts. 9.1.7, 

9.1.7.5 

×  

S2.16 For fonts with ―Installable embedding‖ licensing intent, 

producers SHOULD perform embedded font obfuscation. 

9.1.7.2 ×  

S2.17 For fonts with ―Installable embedding‖ licensing intent, 

consumers SHOULD NOT extract or permanently install the 

font. 

9.1.7.2  × 

S2.18 For fonts with ―Restricted license embedding‖ licensing 

intent, producers SHOULD generate a path filled with an 

image brush referencing an image of rendered characters 

and SHOULD include the actual text in the 

AutomationProperties.Name attribute of the <Path> element. 

9.1.7.2 ×  

S2.19 Although the licensing intent allows embedding of non-

obfuscated fonts and installation of the font on a remote 

client system under certain conditions, this is NOT 

RECOMMENDED in XPS Documents. Instead, producers 

SHOULD always perform font obfuscation, and consumers 

SHOULD never extract or permanently install fonts. 

9.1.7.3 × × 

S2.20 It is RECOMMENDED that the extension of an obfuscated 

Font part name be ―.odttf‖ for TrueType fonts and ―.odttc‖ 

for TrueType collections. 

9.1.7.3 ×  

S2.21 Producers SHOULD include only PrintTicket settings that 

support portability of the XPS Document. 

9.1.9.1 ×  

S2.22 Producers SHOULD only attach PrintTicket parts containing 

only document-level and page-level settings with 

FixedDocument parts. 

9.1.9.2 ×  

S2.23 Producers SHOULD only attach PrintTicket parts containing 

only page-level settings with FixedPage parts. 

9.1.9.2

9.1.9.3 

×  

S2.24 The FixedDocumentSequence part SHOULD follow the part 

name recommendation ―/<FixedDocSeq>.fdseq‖ where 

9.2 ×  



XPS Specification and Reference Guide I. Conformance Requirements 

 Working Draft 1.2, May 2008 417 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

S2.35 
If the referenced font part is a TrueType Collection, then if 

the fragment portion of the URI is not recognised as a valid 

integer, consumers SHOULD generate an error. 

9.1.7  × 

I.2.3 OPTIONAL Conformance Requirements 1 

Table I–4. Parts and Relationships OPTIONAL conformance requirements 2 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

O2.1 Thumbnail parts MAY be included in an XPS Document 9.1 ×  

O2.2 PrintTicket parts MAY be included in an XPS Document. 9.1 ×  

O2.3 ICC Profile parts MAY be included in an XPS Document. 9.1 ×  

O2.4 DocumentStructure parts MAY be included in an XPS Document. 9.1 ×  

O2.5 StoryFragments parts MAY be included in an XPS Document. 9.1 ×  

O2.6 SignatureDefinitions parts MAY be included in an XPS Document. 9.1 ×  

O2.7 DiscardControl parts MAY be included in an XPS Document. 9.1 ×  

O2.8 A Core Properties relationship MAY be included in an XPS Document, 

from the package to the Core Properties part. 

9.1.1 ×  

O2.9 A Digital Signatures Origin relationship MAY be included in an XPS 

Document, from the package to the Digital Signature Origin part. 

9.1.1 ×  

O2.10 Digital Signature relationships MAY be included in an XPS Document, 

from the Digital Signature Origin part to a Digital Signature XML 

Signature part. 

9.1.1 ×  

O2.11 Digital Signature Certificate relationships MAY be included in an XPS 

Document, from a Digital Signature XML Signature part to the Digital 

Signature Certificate part. 

9.1.1 ×  

O2.12 Digital Signature Definitions parts MAY be included in an XPS 

Document, from a FixedDocument part to the Digital Signature 

Definitions part. 

9.1.1 ×  

O2.13 DiscardControl relationships MAY be included in an XPS Document, 

from the package to a DiscardControl part. 

9.1.1 ×  

O2.14 DocumentStructure relationships MAY be included in an XPS 

Document, from a FixedDocument part to the DocumentStructure part. 

9.1.1 ×  

O2.15 PrintTicket relationships MAY be included in an XPS Document, from a 

FixedDocumentSequence, FixedDocument, or FixedPage part to a 

PrintTicket part. 

9.1.1 ×  

O2.16 StoryFragments relationships MAY be included in an XPS Document, 

from a FixedPage part to a StoryFragments part. 

9.1.1 ×  



I. Conformance Requirements XPS Specification and Reference Guide  

418 Working Draft 1.2, May 2008 

O2.17 Thumbnail relationships MAY be included in an XPS Document, from 

the package to an Image part or from a FixedPage part to an Image 

part. 

9.1.1 ×  

O2.18 Color Profiles MAY be embedded in image files. 9.1.5 ×  

O2.19 Thumbnail images MAY be attached to a FixedPage part using a 

Thumbnail relationship. 

9.1.6 ×  

O2.20 Fonts MAY be subsetted based on glyph usage. 9.1.7.1 ×  

O2.21 Producers MAY use a 128-bit random number instead of a true GUID 

for an obfuscated font name. 

9.1.7.3 ×  

O2.22 An obfuscated Font part MAY have an arbitrary extension. 9.1.7.3 ×  

O2.23 Producers MAY add digital signature requests and instructions to an 

XPS Document in the form of signature definitions.  

9.1.10 ×  

O2.24 A producer MAY sign against an existing signature definition to provide 

additional signature information.  

9.1.10 ×  

O2.25 A recipient of an XPS Document MAY also sign it against a signature 

definition. 

9.1.10 ×  

O2.26 This requirement was removed prior to Edition 1 of this specification.    

O2.27 Consumers MAY provide an algorithmic construction of the structure of 

an XPS Document based on a page-layout analysis, provided such 

structure is not explicitly provided in DocumentStructure and 

StoryFragments parts. 

9.1.11  × 

O2.28 A resource that is intended to be used across multiple fixed documents 

MAY be named according to the guidelines for shared resources. 

9.2 ×  

O2.29 Producers MAY include Markup Compatibility and Extensibility elements 

and attributes in DocumentStructure, FixedDocument, 

FixedDocumentSequence, FixedPage, Relationships, Remote Resource 

Dictionary, SignatureDefinitions, and StoryFragments parts. 

9.3.1 ×  

O2.30 Wherever a single whitespace character is allowed in XPS Document 

markup, multiple whitespace characters MAY be used (unless explicitly 

restricted by a pattern restriction in the corresponding schema).  

9.3.4 ×  

O2.31 Attributes in XPS Document markup that specify comma-delimited 

attribute values MAY, unless specified otherwise, OPTIONALLY include 

whitespace characters preceding or following the comma.  

9.3.4 ×  

O2.32 Where the XPS Document schema specifies attributes of types that 

allow whitespace collapsing, leading and trailing whitespace in the 

attribute value MAY be used along with other whitespace that relies on 

the whitespace collapsing behavior specified in the XML Schema 

Specification. 

9.3.4 ×  



I. Conformance Requirements XPS Specification and Reference Guide  

422 Working Draft 1.2, May 2008 

I.5 Text 1 

I.5.1 MUST Conformance Requirements 2 

Table I–10. Text MUST conformance requirements 3 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

M5.1 If the CaretStops attribute is missing from the <Glyphs> element, a 

consumer MUST interpret the text as having a caret stop between 

each Unicode UTF-16 code unit and at the beginning and end of the 

text. 

12.1  ×S 

M5.2 If the UnicodeString attribute of the <Glyphs> element specifies an 

empty string (―‖ or ―{}‖) and the Indices attribute is not specified or 

is empty, the consumer MUST generate an error. 

12.1 × v 

M5.3 The x:Key attribute of the <Glyphs> element MUST be present when 

the element is defined in a resource dictionary. It MUST NOT be 

specified outside a resource dictionary. 

12.1 × v 

M5.4 The sum of the code unit counts for all the GlyphMapping entries in 
the Indices attribute MUST NOT exceed the number of UTF-16 code 

units in the UnicodeString attribute if the UnicodeString attribute is 

specified and does not contain an empty value (―‖ or ―{}‖). If a 

ClusterMapping is not specified within a GlyphMapping entry, the 

code unit count is 1. If the Indices attribute specifies a GlyphIndex 

that does not exist in the font, the consumer MUST generate an 

error. 

12.1.3 × v 

M5.5 If there is not a one-to-one mapping between code units in the 

UnicodeString attribute and the glyph indices, the GlyphIndex value in 

the Indices attribute MUST be specified. 

12.1.3 ×  

M5.6 The AdvanceWidth of the Indices attribute MUST be calculated as the 

exact unrounded origin of the subsequent glyph minus the sum of 

the calculated (that is, rounded) advance widths of the preceding 

glyphs. 

12.1.3 ×  

M5.7 A UnicodeString attribute value that begins with an open brace (―{‖) 

MUST be escaped with a prefix of ―{}‖. If a UnicodeString attribute 

value starts with ―{}‖, consumers MUST ignore those first two 
characters in processing the UnicodeString and in calculating index 

positions for the characters of the UnicodeString. 

12.1.4 × × 

M5.8 This requirement was removed prior to Edition 1 of this specification.    

M5.9 If the UnicodeString attribute contains a Unicode code unit that 

cannot be mapped to a glyph index via a cmap table in the font and 
there is no corresponding GlyphIndex entry in the Indices attribute, 

the consumer MUST display the .notdef glyph 

12.1.4 × × 

M5.10 In the absence of entries in the Indices attribute to override the 

Unicode code units in the UnicodeString attribute value, consumers 

MUST treat Unicode control marks in the UnicodeString attribute like 

ordinary characters and render the glyphs to which the Unicode 

12.1.4  × 



XPS Specification and Reference Guide I. Conformance Requirements 

 Working Draft 1.2, May 2008 423 

control marks are mapped in the CMAP table. 

M5.11 Because advance-widths, glyph indices, and caret-stops are 

associated with the generated Unicode string, consumers MUST NOT 
normalize the UnicodeString attribute value to produce an internal 

representation. 

12.1.4  × 

M5.12 Producers MUST lay out algorithmically emboldened glyphs using 

advance widths that are 2% of the em size larger than when not 

algorithmically emboldened. 

12.1.5 ×  

M5.13 Consumers MUST implement the effect of algorithmic emboldening 

such that the black box of the glyph grows by 2% of the em size. 

When advance widths are omitted from the markup and the glyphs 

are algorithmically emboldened, the advance widths obtained from 

the horizontal metrics font table (if IsSideways is false) or the vertical 

metrics font table (if IsSideways is true) of the font MUST be 

increased by 2% of the em size. 

12.1.5  × 

M5.14 Producers MUST lay out algorithmically italicized glyphs using 

exactly the same advance widths as when not algorithmically 

italicized. 

12.1.5 ×  

M5.15 Producers MUST NOT specify text that is both right-to-left (BidiLevel 

attribute value of 1) and vertical (IsSideways attribute set to true). 

12.1.6.2 × v 

M5.16 If a consumer does not understand the specified device font name, it 

MUST render the embedded version of the font. 

12.1.7  ×P 

M5.17 When rendering a printer device font, consumers MUST use the 
UnicodeString attribute and ignore the glyph index components of the 

Indices attribute.  

12.1.7  ×FP 

M5.18 When rendering a printer device font, consumers MUST still honor 
the advance width and x,y offset values present in the Indices 

attribute. 

12.1.7  ×P 

M5.19 For producers, a <Glyphs> element with a specified device font 
name MUST have exactly one Indices glyph per character in the 

UnicodeString attribute. Its Indices attribute MUST NOT include any 

cluster specifications. If the Indices attribute includes a cluster 

mapping, the consumer MUST NOT use the device font name and 

MUST render the embedded version of the font. 

12.1.7 × vFP 

M5.20 For producers of a <Glyphs> element with a specified device font 
name, each of the Indices glyphs MUST include a specified advance 

width and MUST include specified x and y offset values if they are 

non-zero. 

12.1.7 ×  

M5.21 This requirement was removed prior to Edition 1 of this specification.    

M5.22 If there are insufficient flags in the CaretStops attribute value to 

correspond to all the UTF-16 code units in the UnicodeString attribute 

value, all remaining UTF-16 code units in the Unicode string MUST 

be considered valid caret stops. 

12.1.9  ×S 

M5.23 If the Indices attribute is specified, the values provided MUST be 

used in preference to values determined from the UnicodeString 

attribute alone. 

12.1.3  × 

M5.24 If the Indices attribute specifies a GlyphIndex that does not exist in 12.1.3 × v 



I. Conformance Requirements XPS Specification and Reference Guide  

424 Working Draft 1.2, May 2008 

the font, the consumer MUST generate an error. 

I.5.2 SHOULD Conformance Requirements 1 

Table I–11. Text SHOULD conformance requirements 2 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

S5.1 The value of the CaretStops attribute SHOULD indicate that the caret 

cannot stop in front of most combining marks and the second UTF-16 

code unit of UTF-16 surrogate pairs. 

12.1 ×  

S5.2 If producers include control marks in the Unicode string, they SHOULD 
include an Indices attribute to specify glyph indices and/or character-to-

glyph mapping information for the control marks. 

12.1.4 ×  

S5.3 If alternate vertical character representations are available in the font, 
the producer SHOULD use those in preference to the IsSideways attribute 

and provide their glyph indices in the Indices attribute. 

12.1.6 ×  

S5.4 Producers SHOULD NOT produce markup that will result in different 

rendering between consumers using the embedded font to render and 

consumers using the device font to render. 

12.1.7 ×  

S5.5 Specifying a UnicodeString for <Glyphs> elements is RECOMMENDED, as it 

supports searching, selection, and accessibility. 

12.1.4 ×  

I.5.3 OPTIONAL Conformance Requirements 3 

Table I–12. Text OPTIONAL conformance requirements 4 

ID Rule 
R

e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

O5.1 Producers MAY include Unicode control marks in the Unicode string. 

Such marks include control codes, layout controls, invisible operators, 

deprecated format characters, variation selectors, non-characters, 

and specials, according to their definition within the Unicode 

specification. 

12.1.4 ×  

O5.2 Producers MAY choose to generate UnicodeString attribute values that 

are not normalized by any Unicode-defined algorithm. 

12.1.4 ×  

O5.3 Consumers that understand the device font name MAY ignore the 

embedded font and use the device-resident version. 

12.1.7  ×P 

O5.4 Glyph indices MAY be omitted from markup where there is a one-to-

one mapping between the positions of Unicode scalar values in the 
UnicodeString attribute and the positions of glyphs in the glyph string 

and the glyph index is the value in selected character mapping table 

of the font. 

12.1.10.1 ×  

O5.5 Glyph advance widths MAY be omitted from markup where the 

advance width desired is specified in the font tables, once adjusted for 

12.1.10.2 ×  



I. Conformance Requirements XPS Specification and Reference Guide  

426 Working Draft 1.2, May 2008 

M7.3 An xml:lang attribute within a resource definition MUST be interpreted 

in the context of the resource reference, not the resource definition. 

14.2.3 × × 

M7.4 A remote resource dictionary MUST follow the requirements that apply 

to inline resource dictionaries.  

14.2.3.1 × v 

M7.5 A remote resource dictionary MUST NOT contain any resource 

definition children that reference another remote resource dictionary. 

14.2.3.1 × v 

M7.6 A <ResourceDictionary> element that specifies a remote resource 
dictionary in its Source attribute MUST NOT contain any resource 

definition children. 

14.2.3.1 × v 

M7.7 Inline references to fonts or images in remote resource dictionary 

entries MUST be interpreted with the same base URI as the Remote 

Resource Dictionary part, not from the base URI of the part referring 

to the particular remote resource dictionary entry. 

14.2.3.1 × × 

M7.8 When a resource definition references a previously defined resource 

with the same name in an ancestor resource dictionary, the reference 

MUST be resolved before the redefined resource is added to the 

dictionary 

14.2.5 × × 

M7.9 If a resource definition references another resource, the reference 

MUST be resolved in the context of the resource definition, not in the 

context of the resource use. 

14.2.5 × × 

M7.10 If a resource dictionary contains Markup Compatibility and 

Extensibility elements and attributes, the processing of the Markup 

Compatibility and Extensibility markup MUST occur in the context of 

the definition of the resource dictionary, not in the context of resource 

references. 

14.2.6 × × 

M7.11 The x:Key attribute of the <MatrixTransform> element MUST be 

present when the element is defined in a resource dictionary. It MUST 

NOT be specified outside a resource dictionary. 

14.4.1 × v 

I.7.2 OPTIONAL Conformance Requirements 1 

Table I–15. Common properties OPTIONAL conformance requirements 2 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

O7.1 Resource dictionaries MAY be specified in separate parts (called remote 

resource dictionaries) and referenced from within the 

<FixedPage.Resources> or <Canvas.Resources> property element. 

14.2 ×  

O7.2 A resource definition MAY reference another resource defined prior to 

the point of reference, including a resource previously within the same 

resource dictionary. 

14.2.3 ×  

O7.3 If the resource dictionary does not appear in a separate part, a resource 

definition MAY reference a previously defined resource in a resource 

dictionary of a parent or ancestor <Canvas> or <FixedPage> element. 

14.2.3 ×  

O7.4 This requirement was removed prior to Edition 1 of this specification.    



I. Conformance Requirements XPS Specification and Reference Guide  

446 Working Draft 1.2, May 2008 

I.12 Additional Conformance Requirements 1 

I.12.1 MUST Conformance Requirements 2 

Table I–28. Additional MUST conformance requirements 3 

ID Rule 

R
e
fe

re
n

c
e
 

P
r
o

d
u

c
e
r
 

C
o

n
s
u

m
e
r
 

M12.1 FixedDocument parts MUST be referenced by <DocumentReference> 

elements within the FixedDocumentSequence part in ascending order. If 

additional FixedDocument parts are inserted into a fixed document 

sequence, producers MUST NOT unintentionally change the order of the 

existing FixedDocument part references. 

 

– ×  

M12.2 A FixedDocument part MUST NOT be referenced more than once by a 

FixedDocumentSequence part. 

– × v 

M12.3 A FixedPage part MUST NOT be referenced more than once in total, 

throughout all FixedDocument parts. 

– × v 

M12.4 FixedPage parts MUST be referenced by <PageContent> elements within a 

fixed document in ascending order. If additional FixedPage parts are 

inserted into a FixedDocument part, producers MUST NOT unintentionally 

change the order of the existing FixedPage part references. Documents in 

languages for which the reading order of pages is back-to-front can be 

accommodated by adding <PageContent> elements to the FixedDocument 

in reverse order or by binding the right side of the page. 

– ×  

M12.5 Any FixedDocumentSequence, FixedDocument, or FixedPage part that is 

reachable from the primary fixed payload root or its related parts by 
relationship or by the Source attribute on a <DocumentReference> or 

<PageContent> element MUST have no more than one attached PrintTicket 

part. 

– × v 

M12.6 Every Font part reachable from the primary fixed payload root or its related 
parts by relationship or by the Source attribute on a <DocumentReference> 

or <PageContent> element MUST be a valid OpenType font. 

– × v 

M12.7 The content types defined in this specification MUST NOT include 

parameters. A consumer MUST treat the presence of parameters on these 

content types as an error when the affected part is accessed. 

I.2 × v 

End of informative text. 4 



XPS Specification and Reference Guide J. Bibliography 

 Working Draft 1.2, May 2008 447 

J. Bibliography 1 

Independent JPEG Group. http://www.ijg.org/files/ 2 

A Nonaliasing, Real-Time Spatial Transform Technique. Fant, Karl M. IEEE Computer Graphics 3 

and Applications 6 (Jan. 1986): 71–80. 4 

OS/2 and Windows Metrics. Microsoft Corporation. 2001. 5 

http://www.microsoft.com/typography/otspec/os2.htm 6 

OpenType Font File. Microsoft Corporation. 2001. 7 

http://www.microsoft.com/typography/otspec/otff.htm 8 

OpenType Specification, Version 1.4. Microsoft Corporation. 2004. 9 

http://www.microsoft.com/typography/otspec/default.htm 10 

Print Schema. Microsoft Corporation. 2006. http://windowssdk.msdn.microsoft.com/en-11 

us/library/default.aspx 12 

TIFF, Revision 6.0. Adobe Systems Incorporated. 1992. 13 

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf 14 

Windows Color System in Windows Longhorn, WinHEC 2005 Version. Microsoft Corporation. 15 

2005. http://download.microsoft.com/download/5/D/6/5D6EAF2B-7DDF-476B-93DC-16 

7CF0072878E6/WCS.doc  17 

Windows Media Photo Microsoft Corporation. http://www.microsoft.com/xps 18 

http://www.microsoft.com/xps

